Skip to main content
Log in

Synthesis of aminophosphines containing a chiral dinaphthoazepine entity and their use in asymmetric catalysis

Synthese von Aminophosphinen mit einer chiralen Dinaphthoazepineinheit und ihre Anwendung in der asymmetrischen Katalyse

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

Three azaphospha ligands with a chiral dinaphthoazepine subunit were prepared and used in asymmetric carbon-carbon bond forming reactions. The nickel catalyzedGrignard cross coupling reaction of 1-phenylethyl magnesium chloride and vinyl bromide afforded the product in up to 47% ee. The palladium catalyzed allylic substitution of 1,3-substituted propenylacetates with dimethyl malonate and the coupling of allylacetate with methyl N-(diphenylmethylene)-glycinate resulted in asymmetric inductions of up to 97% ee and 51% ee, respectively.

Zusammenfassung

Drei Azaphospha-Liganden mit einer chiralen Dinaphthoazepineinheit wurden dargestellt und in asymmetrischen Kohlenstoff-Kohlenstoff-Verknüpfungsreaktionen eingesetzt. Bei der nickelkatalysiertenGrignard-Crosskupplung von 1-Phenylethylmagnesiumchlorid mit Vinylbromid erhielt man das Kupplungsprodukt mit bis zu 47% ee. Die palladiumkatalysierte allylische Substitution von 1,3-substituierten Propenylacetaten mit Dimethylmalonat und die Kupplung von Allylacetat mit Methyl-N-(diphenylmethylen)-glycinat zeigten asymmetrische Induktionen von bis zu 97% bzw. 51% ee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosini C, Franzini L, Raffaelli A, Salvadori S (1992) Synthesis 503

  2. Noyori R, Takaya H (1990) Acc Chem Res23: 345

    Google Scholar 

  3. Hotta H, Suzuki T, Miyano S (1990) Chem Lett 143;

  4. Hovorka M, Günterova J, Zavada J (1990) Tetrahedron Lett31: 413;

    Google Scholar 

  5. Smrcina M, Lorenc M, Hanus V, Kocovsky P (1991) Synlett 231;

  6. Gladiali S, Dore A, Fabbri D, De Lucchi O, Manassero M (1994) Tetrahedron: Asymmetry5: 511

    Google Scholar 

  7. Miyano S, Fukushima H, Handa S, Ito H, Hashimoto H (1988) Bull Chem Soc Jpn61: 3249;

    Google Scholar 

  8. Groves JT, Viski P (1990) J Org Chem55: 3628;

    Google Scholar 

  9. Suzuki T, Hotta H, Hattori T, Miyano S (1990) Chem Lett 807;

  10. Hattori T, Shijo M, Kumagai S, Miyano S (1991) Chemistry Express6: 335;

    Google Scholar 

  11. De Lucchi O, Fabbri D, Lucchini V (1991) Synlett 565;

  12. Smrcina M, Lorenc M, Hanus V, Sedmera P, Kocovsky P (1992) J Org Chem57: 1917;

    Google Scholar 

  13. Alcock NW, Brown JM, Pearson M, Woodward S (1992) Tetrahedron: Asymmetry3: 17;

    Google Scholar 

  14. Hayashi T, Uozumi Y (1992) Pure & Appl Chem64: 1911;

    Google Scholar 

  15. Ohta T, Ito M, Inagaki K, Takaya H (1993) Tetrahedron Lett34: 1615;

    Google Scholar 

  16. Uozumi Y, Tanahashi A, Lee S-Y, Hayashi T (1993) J Org Chem58: 1945;

    Google Scholar 

  17. Hattori T, Hotta H, Suzuki T, Miyano S (1993) Bull Chem Soc Jpn66: 613;

    Google Scholar 

  18. Smrcina M, Polakova J, Vyskocil S, Kocovsky P (1993) J Org Chem58: 4534;

    Google Scholar 

  19. Nelson TD, Meyers AI (1994) J Org Chem59: 2655;

    Google Scholar 

  20. Rawal VH, Florjancic AS, Singh SP (1994) Tetrahedron Lett35: 8985;

    Google Scholar 

  21. Stara IG, Stary I, Tichy M, Zavada J, Fiedler P (1994) J Org Chem59: 1326;

    Google Scholar 

  22. Uozumi Y, Suzuki N, Ogiwara A, Hayashi T (1994) Tetrahedron50: 4293

    Google Scholar 

  23. Hayashi T, Konishi M, Fukushima M, Kanehira K, Hioki T, Kumada M (1983) J Org Chem48: 2195;

    Google Scholar 

  24. Sprinz J, Helmchen G (1993) Tetrahedron Lett34: 1769;

    Google Scholar 

  25. Dawson GJ, Frost CG, Williams JMJ, Coote SJ (1993) Tetrahedron Lett34: 3149;

    Google Scholar 

  26. von Matt P, Pfaltz A (1993) Angew Chem105: 614;

    Google Scholar 

  27. Sprinz J, Kiefer M, Helmchen G, Reggelin M, Huttner G, Walter O, Zsolnai L (1994) Tetrahedron Lett35: 1523;

    Google Scholar 

  28. Allen JV, Coote SJ, Dawson GJ, Frost CG, Martin CJ, Williams JMJ (1994) J Chem Soc Perkin Trans 1, 2065;

  29. Dawson GJ, Williams JMJ, Coote SJ (1995) Tetrahedron Lett36: 461;

    Google Scholar 

  30. Eichelmann H, Gais H-J (1995) Tetrahedron: Asymmetry6: 643;

    Google Scholar 

  31. Baldwin IC, Williams JMJ, Beckett RP (1995) Tetrahedron: Asymmetry6: 679;

    Google Scholar 

  32. Dawson GJ, Williams JMJ, Coote SJ (1995) Tetrahedron: Asymmetry6: 2535;

    Google Scholar 

  33. Baldwin IC, Williams JMJ, Beckett RP (1995) Tetrahedron: Asymmetry6: 1515;

    Google Scholar 

  34. Valk J-M, Claridge TDW, Brown JM (1995) Tetrahedron: Asymmetry6: 2597

    Google Scholar 

  35. Wenner W (1951) J Org Chem16: 1475;

    Google Scholar 

  36. Maigrot N, Mazaleyrat J-P, Welvart Z (1985) J Org Chem50: 3916;

    Google Scholar 

  37. Hawkins JM, Fu GC (1986) J Org Chem51: 2820;

    Google Scholar 

  38. Stara IG, Stary I, Zavada J (1992) J Org Chem57: 6966

    Google Scholar 

  39. Hawkins JM, Lewis TA (1992) J Org Chem57: 2114;

    Google Scholar 

  40. Hawkins JM, Lewis TA (1994) J Org Chem59: 649

    Google Scholar 

  41. Wimmer P, Widhalm M (1995) Tetrahedron: Asymmetry6: 657

    Google Scholar 

  42. Kubota H, Koga K (1994) Tetrahedron Lett35: 6689

    Google Scholar 

  43. Maigrot N, Mazaleyrat J-P (1985) Synthesis 317

  44. Hayashi T (1993) Asymmetric Allylic Substitution and Grignard Cross-Coupling. In: Ojima I (ed) Catalytic Asymmetric Synthesis. VCH, Weinheim, pp 325–365

    Google Scholar 

  45. Auburn PA, Mackenzie PB, Bosnich B (1985) J Am Chem Soc107: 2033;

    Google Scholar 

  46. Mackenzie PB, Whelan J, Bosnich B (1985) J Am Chem Soc107: 2046;

    Google Scholar 

  47. Farrar DH, Payne NC (1985) J Am Chem Soc107: 2054

    Google Scholar 

  48. Brown JM, Cooley NA (1988) Chem Rev88: 1031;

    Google Scholar 

  49. Brown JM, Hulmes DI, Guiry PJ (1994) Tetrahedron50: 4493

    Google Scholar 

  50. Hayashi T, Yamamoto A, Ito Y (1986) J Chem Soc (Chem Commun) 1090

  51. Wimmer P (1995) Thesis. University of Vienna

  52. Frost CG, Williams JMJ (1993) Tetrahedron Lett34: 2015;

    Google Scholar 

  53. Dawson GJ, Frost CG, Williams JMJ, Coote SJ (1993) Tetrahedron Lett34: 3149;

    Google Scholar 

  54. Dawson GJ, Frost CG, Martin CJ, Williams JMJ (1993) Tetrahedron Lett34: 7793 and refs. [5b-j]

    Google Scholar 

  55. The program SYBYL (Trypos, version 6.2) was used on a silicon Graphics work station

  56. Hayashi T, Konishi M, Fukushima M, Mise T, Kagotani M, Tajika M, Kumada M (1982) J Am Chem Soc104: 180

    Google Scholar 

  57. Genet JP, Ferroud D, Juge S, Montes JR (1986) Tetrahedron Lett27: 4573;

    Google Scholar 

  58. Genet JP, Juge S, Achi S, Mallart S, Ruiz Montes J, Levif G (1988) Tetrahedron44: 5263;

    Google Scholar 

  59. Burgess K, Ohlmeyer MJ, Whitmire KH (1992) Organometallics11: 3588

    Google Scholar 

  60. Brunner H, Lautenschlager H-J, König WA, Krebber R (1990) Chem Ber123: 847

    Google Scholar 

  61. Cf. Leutenegger U, Umbricht G, Fahrni C, von Matt P, Pfaltz A (1992) Tetrahedron48: 2143

    Google Scholar 

  62. Sennhenn P, Gabler B, Helmchen G (1994) Tetrahedron Lett35: 8595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimmer, P., Widhalm, M. Synthesis of aminophosphines containing a chiral dinaphthoazepine entity and their use in asymmetric catalysis. Monatsh Chem 127, 669–681 (1996). https://doi.org/10.1007/BF00817258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00817258

Keywords

Navigation