Skip to main content
Log in

Effects of plasma membrane oxidoreductases on Ca2+ mobilization and protein phosphorylation in rat brain synaptosomes

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We have investigated the possible role of plasma membrane oxidoreductases in the Ca2+ export mechanisms in rat brain synaptic membranes. Ca2+ efflux in nerve terminals is controlled both by a high-affinity/low capacity Mg-dependent ATP-stimulated Ca2+ pump and by a low affinity/high capacity ATP-independent Na+-Ca2+ exchanger. Both Ca2+ efflux mechanisms were strongly inhibited by pyridine nucleotides, in the order NADP>NAD>NADPH>NADH with IC50 values of ca. 10 mM for NADP and ca. 3 mM for the other agents in the case of the ATP-driven Ca2+ pump and with IC50 values between 8 and 10 mM for the Na+-Ca2+ exchanger. Oxidizing agents such as DCIP and ferricyanide inhibited the ATP-driven Ca2+ efflux mechanism but not the Na+-Ca2+ exchanger. In addition, full activation of plasma membrane oxidoreductases requires both an acceptor and an electron donor; therefore the combined effects of both substrates added together were also studied. When plasma membrane oxidoreductases of the synaptic plasma membrane were activated in the presence of both NADH (or NADPH) and DCIP or ferricyanide, the inhibition of the ATP-driven Ca2+ pump was optimal; by contrast, the pyridine nucleotide-mediated inhibition of the Na+-Ca2+ exchanger was partially released when both substrates of the plasma membrane oxidoreductases were present together. Furthermore, the activation of plasma membrane oxidoreductases also strongly inhibited intracellular protein phosphorylation in intact synaptosomes, mediated by eithercAMP-dependent protein kinase, Ca2+ calmodulin-dependent protein kinases, or protein kinase C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hepes:

4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid

SDS:

sodium dodecyl sulfate

EGTA:

ethylenglycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid

DCIP:

dichlorophenol-indophenol

References

  • Alvarez, J., Garcia-Sancho, J. and Herreros, B. (1984).Biochim. Biophys. Acta 771, 23–27.

    Google Scholar 

  • Bienfait, H. F. (1985).J. Bioenerg. Biomembr. 17, 73–83.

    Google Scholar 

  • Cotman, C. W., and Matthews, D. A. (1971a).Biochim. Biophys. Acta 249, 380–394.

    Google Scholar 

  • Cotman, C. W., and Matthews, D. A. (1971b).Biochim. Biophys. Acta 349, 380–397.

    Google Scholar 

  • Crane, F. L. and Loew, H. (1976)FEBS Lett. 68, 153–156.

    Google Scholar 

  • Crane, F. L., Löw, H., Sun, I. L., Navas, P., and Morré, D. J. (1987). InRedox Functions of the Eukaryotic Plasma Membrane (Ramirez, J. M., ed.), CSIC Press, Madrid, pp. 1–19.

    Google Scholar 

  • Crane, F. L., Morré, J. D., and Löw, H. (1989).Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth Plenum Press, New York.

    Google Scholar 

  • DiPolo, R., and Beaugé, L. (1988).Biochim. Biophys. Acta 947, 549–569.

    Google Scholar 

  • Eisen, A., Kiehart, D. P., Weiland, S. J., and Reynolds, G. T. (1984).J. Cell Biol. 99, 1647–1654.

    Google Scholar 

References

  • Epel, D. (1964).Biochem. Biophys. Res. Commun. 17, 69–73.

    Google Scholar 

  • Epel, D., Patton, C., Qwallace, R. W., and Cheung, W. Y. (1981).Cell 23, 543–549.

    Google Scholar 

  • Garcia-Sancho, J., Sanchez, A., and Herreros, B. (1979).Biochim. Biophys. Acta 556, 118–130.

    Google Scholar 

  • Gill, D. L., Grollman, E. F., and Kohn, D. L. (1981).J. Biol. Chem. 256, 184–192.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 249, 2491–2498.

    Google Scholar 

  • Loew, H. and Werner, S. (1976).FEBS Lett. 65, 96–98.

    Google Scholar 

  • Lopez-Perez, M. J., Paris, G., and Larsson, C. (1981).Biochim. Biophys. Acta 635, 359–368.

    Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., Chang, H. H., and Kitos, T. E. (1983).J. Biol. Chem. 258, 6101–6108.

    Google Scholar 

  • Michaelis, M. L., Kitos, T. E., Nunley, E. W., Lecluyse, E., and Michaelis, E. K. (1987).J. Biol. Chem. 262, 4182–4189.

    Google Scholar 

  • Miner, C., Lopez-Burillo, S., Garcia-Sancho, J., and Herreros, B. (1983).Biochem. Biophys. Acta 727, 266–272.

    Google Scholar 

  • Palfrey, H. C., and Mobley, P. (1987). InNeurochemistry. A practical Approach (Turner A. J., and Bachelard, H. S., eds), IRL Press, Oxford, 161–192.

    Google Scholar 

  • Poenie, M., Alderton, J., Tsien, R. Y., and Steinhardt, R. A. (1985).Nature (London)315, 147–149.

    Google Scholar 

  • Rasheed, H. M., and Patel, T. B. (1987).J. Biol. Chem. 262, 15953–15958.

    Google Scholar 

  • Segal, A. W., Croos, A. R., Gacia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G. (1983).N. Engl. J. Med. 308, 245–251.

    Google Scholar 

  • Sun, I. L., Crane, F. L., Grebing, C., and Loew, H. (1985),Exp. Cell Res. 156, 528–536.

    Google Scholar 

  • Treichler, T., and Dreyer, J. L. (1986).Biol. Chem. Hoppe-Seyler 367, 298.

    Google Scholar 

  • Whitaker, M. J., and Steinhart, R. A. (1981).Cell 25, 95–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulliard, C., Marmy, N. & Dreyer, J.L. Effects of plasma membrane oxidoreductases on Ca2+ mobilization and protein phosphorylation in rat brain synaptosomes. J Bioenerg Biomembr 22, 645–662 (1990). https://doi.org/10.1007/BF00809069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809069

Key Words

Navigation