Archive of Applied Mechanics

, Volume 64, Issue 8, pp 539–546 | Cite as

On the effective application of asynchronous excitations to nonlinear mechanical systems

  • S. Yano
  • A. Oks


Ways of effectively applying asynchronous excitations to nonlinear systems are studied in spite of complexity of the system behavior caused by two excitations with asynchronous frequencies. The operation of suppressing primary resonances for vibro-machines by adding another asynchronous excitation to the main systems is shown. A new property, namely that resonant amplitudes are perfectly suppressed at some partial-frequency intervals and at one wide-frequency interval, was recognized in the systems with piecemeal linear characteristics under the action of both parametric and forcing excitations. The phenomena are different from reduction of whole resonance curves occurring in systems with continuous nonlinearity.


Neural Network Complex System Nonlinear System Information Theory Nonlinear Dynamics 

Wirksame Verwendung asynchroner Erregung für nichtlineare mechanische Systeme


Der Weg einer wirksamen Verwendung einer asynchronen Erregung für nichtlineare Systeme wird trotz der Kompliziertheit des Systemverhaltens bei zwei Erregungen mit asynchronen Frequenzen studiert. Die Unterdrückung primärer Resonanzen von Schwingungs-maschinen beim Zusatz einer asynchronen Eregung zum Hauptsystem wird gezeigt. Die neue Eigenschaft, daß die Resonanzamplituden in einigen partiellen Frequenzregionen und einen weiten Frequenzbereich perfekt unterdrückt werden, wurde für Systeme mit stückweise linearer Charakteristik und simultaner Parameter- und Fremderregung gezeigt. Die Phänomene sind verschieden von der Verringerung ganzer Resonanzkurven in kontinuierlichen nichtlinearen Systemen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kahraman, A.;Singh, R.: Non-linear dynamics of a geared rotor-bearing system with multiple clearance. J. Sound Vibration 144 (1991) 469–506Google Scholar
  2. 2.
    Nayfeh, A. H.: Quenching of a primary resonance by a superharmonic resonance. J. Sound and Vibration 92 (1984) 363–377Google Scholar
  3. 3.
    Nayfeh, A. H.: Quenching of a primary resonance by a combination resonance of the additive or difference type. J. Sound and Vibration 97 (1984) 65–73Google Scholar
  4. 4.
    Plaut, R. H.;Gentry, J. J.;Mook, D. T.: Non-linear structural vibrations under combined multi-frequency parametric and external excitations. J. Sound and Vibration 140 (1990) 381–390Google Scholar
  5. 5.
    Landa, P. S.: Multi-degree-of freedom self-oscillation systems, p. 454 (in Russian). Moskau: Nauka 1980Google Scholar
  6. 6.
    Sueoka, A.;Kondou, T.;Nakamura, N.: Nonlinear forced parametric resonances of a roller chain (In a case where the frequency ratio of forced lateral displacement to tension fluctuation is 1 ∶ 1) (in Japanese). Trans. Jpn. Soc. Mech. Eng. 57-540C (1991) 2524–2531Google Scholar
  7. 7.
    Oks, A. B.;Tsyfanskii, S. L.;Iwatsubo, T.: Asynchronous stabilization phenomena of resonant oscillations in non-linear systems. JSME Int. J. 34 (1991) 26–32Google Scholar
  8. 8.
    Yano, S.: Phase-plane analyse of parametrically- and self-excited mechanical systems. Memoirs of the Faculty of Engineering, Fukui Univ. 34 (1986) 73–89Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Yano
    • 1
  • A. Oks
    • 2
  1. 1.Faculty of Human DevelopmentKobe UniversityKobeJapan
  2. 2.Faculty of Technical Appliances and AutomationRiga Technical UniversityRigaLatvia

Personalised recommendations