Skip to main content

Review of Synchronization in Mechanical Systems

  • Chapter
  • First Online:
Nonlinear Structural Dynamics and Damping

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 69))

Abstract

Synchronization of coupled sub-systems in both natural and engineered systems is a commonplace occurrence, but its existence and analysis in mechanical systems has received much less attention. This is a review, written for mechanical engineers, of some of the work done on complex machines that are in common use. Theoretical characteristics of the phenomena that are present are indicated by solutions to models based on self-excited oscillations. A variety of experiments on synchronization that have been carried out are reported, including work done by the authors on vibrations of rotor blades due to airflow and of automobile parts. A large number of references on the subject has been included so that a researcher who is new to synchronization in complex machinery can use this as a starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford, U.K. (2009)

    MATH  Google Scholar 

  2. Felippa, C.A., Park, K.C., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24–25), 3247–3270 (2001)

    MATH  Google Scholar 

  3. Machado, J.A.T., Lopes, A.M.: Editorial: complex systems in mechanical engineering. Adv. Mech. Eng. 9(7), 1–3 (2017)

    Google Scholar 

  4. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    MATH  Google Scholar 

  5. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  6. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    MathSciNet  Google Scholar 

  7. Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge, U.K. (2017)

    MATH  Google Scholar 

  8. Sen, M., Jáuregui-Correa, J.C., López, C.S.: Foreground and background components in separable complex systems. Systems 4(3) (2016)

    Google Scholar 

  9. Kutz, J.N., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Gao, J., Cao, Y., Tung, W., Hu, J.: Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond. Wiley, Hoboken, NJ (2007)

    MATH  Google Scholar 

  11. Blekhman, I.I.: Synchronization in Science and Technology. ASME Press, New York (1988)

    Google Scholar 

  12. Rosenblum, M., Pikovsky, A.: Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys. 44(5), 401–416 (2003)

    Google Scholar 

  13. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2003)

    Google Scholar 

  14. Nijmeijer, H., Rodriguez-Angeles, A.: Synchronization of Mechanical Systems. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  15. Pikovsky, A., Maistrenko, Y. (eds.): Synchronization: Theory and Application. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  16. Manrubia, S.C., Mikhailov, A.S., Zanette, D.H.: Emergence of Dynamical Order Synchronization Phenomena in Complex Systems. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  17. González-Miranda, J.M.: Synchronization and Control of Chaos: An Introduction for Scientists and Engineers. World Scientific, Singapore (2004)

    Google Scholar 

  18. Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Boccaletti, S., Pisarchik, A.N., del Genio, C.I., Amann, A.: Synchronization: From Coupled Systems to Complex Networks. Cambridge University Press, Cambridge, U.K. (2018)

    MATH  Google Scholar 

  21. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  22. Uchida, A.: Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization. Wiley-UCH, Weinheim, Germany (2011)

    MATH  Google Scholar 

  23. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Sci. Am. 269(6), 102–109 (1993)

    Google Scholar 

  24. Strogatz, S.: Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hachette Books (2004)

    Google Scholar 

  25. Perlikowski, P., Stefanski, A., Kapitaniak, T.: Mode locking and generalized synchronization in mechanical oscillators. J. Sound Vib. 318, 329–340 (2008)

    Google Scholar 

  26. Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude versus oscillation death. Phys. Rep. Rev. Sect. Phys. Lett. 531(4), 173–199 (2013)

    Google Scholar 

  27. Huygens, C.: The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks. Blackwell, R.J. (trans., eds.) Edinburgh Books, Edinburgh, U.K. (1986)

    Google Scholar 

  28. C. Huygens. Letter to de Sluse, Letter No. 1333 of February 24, 1665, p. 241. Oeuvres Complète de Christiaan Huygens. Correspondence 5, 1664–1665; Société Hollandaise des Sciences, Martinus Nijhoff, 1893, La Haye, 2002

    Google Scholar 

  29. Yang, J., Wang, Y., Yu, Y.Z., Xiao, J.H., Wang, X.G.: Huygens’ synchronization experiment revisited: luck or skill? Eur. J. Phys. 39(5), Art. No. 055004 (2018)

    Google Scholar 

  30. Ganiev R.F., Fazullin, F.F.: On the non-linear synchronous oscillation and stability of turbine blades. Trudy Ufimsk aviats. in-ta 98 (1975)

    Google Scholar 

  31. Ganiev, R.F., Balakshin, O.B., Kukharenko, B.G.: On the occurrence of self-synchronization of auto-oscillations of turbo compressor rotor blades (original in Russian in Problemy Mashinostroeniya i Nadezhnosti Mashin, no. 6, pp. 16–23; J. Mach. Manuf. Reliab, 38(6), 535–541 (2009)

    Google Scholar 

  32. Ganiev, R.F., Balakshin, O.B., Kukharenko, B.G.: Flutter synchronization for turbo-compressor rotor blades (original in Russian in Doklady Akademii Nauk, vol. 427, no. 2, pp. 179–182); Dokl. Phys. 54(7), 312–315 (2009)

    Google Scholar 

  33. Quinn, D.D., Wang, F.: Synchronization of coupled oscillators through controlled energy transfer. Int. J. Bifurcat. Chaos 10(6), 1521–1535 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens’s clocks. Proc. Roy. Soc. A-Math. Phys. Eng. Sci. 458(2019), 563–579 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Balthazar, J.M., Felix, J.L.P., Brasil, R.M.: Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Appl. Math. Comput. 164(2), 615–625 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Peña Ramirez, J., Fey, R.H.B., Aihara, K., Nijmeijer, H.: An improved model for the classical Huygens’ experiment on synchronization of pendulum clocks. J. Sound Vib. 333(26), 7248–7266 (2014)

    Google Scholar 

  37. Jaros, P., Borkowski, L., Witkowski, B., Czolczynski, K., Kapitaniak, T.: Multi-headed chimera states in coupled pendula. Eur. Phys. J. Spec. Top. 224(8), 1605–1617 (2015)

    Google Scholar 

  38. Oliveira, H.M., Melo, L.V.: Huygens synchronization of two clocks. Sci. Rep. 5 (2015)

    Google Scholar 

  39. Dudkowski, D., Grabski, J., Wojewoda, J., Perlikowski, P., Maistrenko, Y., Kapitaniak, T.: Experimental multi-stable states for small network of coupled pendula. Sci. Rep. 6 (2016)

    Google Scholar 

  40. Peña Ramirez, J., Olvera, L.A., Nijmeijer, H., Alvarez, J.: The sympathy of two pendulum clocks: beyond Huygens’ observations. Sci. Rep. 6 (2016)

    Google Scholar 

  41. Bertram, C.D., Sheppeard, M.D.: Interactions of pulsatile upstream forcing with flow-induced oscillations of a collapsed tube: mode-locking. Med. Eng. Phys. 22(1), 29–37 (2000)

    Google Scholar 

  42. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825), 277–284 (2001)

    Google Scholar 

  43. Hoppensteadt, F.C., Izhikevich, E.M.: Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circ. Syst. I-Regul. Pap. 48(2), 133–138 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Woafo, P.: Transitions to chaos and synchronization in a nonlinear emitter-receiver system. Phys. Lett. A 267(1), 31–39 (2000)

    MathSciNet  Google Scholar 

  45. Wu, S., Smith, S.L., Fork, R.L.: Kerr-lens-mediated dynamics of 2 nonlinearly coupled mode-locked laser-oscillators. Opt. Lett. 17(4), 276–278 (1992)

    Google Scholar 

  46. Roychowdhury, J.: Boolean computation using self-sustaining nonlinear oscillators. Proc. IEEE 103(11, SI), 1958–1969 (2015)

    Google Scholar 

  47. Ling, F.: Synchronization in Digital Communication Systems. Cambridge University Press, Cambridge, U.K. (2017)

    MATH  Google Scholar 

  48. Rodrigues, F.A., Peron, T.K.D.M., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. Rev. Sect. Phys. Lett. 610, 1–98 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Pecora, L.M., Carroll, T.l.: Synchronization of chaotic systems. Chaos 25(9) (2015)

    Google Scholar 

  50. Woafo, P., Fotsin, H.B., Chedjou, J.C.: Dynamics of two nonlinearly coupled oscillators. Phys. Scr. 57(2), 195–200 (1998)

    Google Scholar 

  51. Thwaites, F.W., Sen, M.: Dynamics of temperatures in thermally-coupled, heated rooms with PI control. In: Proceedings of the ASME IMECE 2007 Pts. A and B, Heat Transfer, Fluid Flows, and Thermal Systems, vol. 8, pp. 585–589 (2008)

    Google Scholar 

  52. Cai, W., Sen, M.: Synchronization of thermostatically controlled first-order systems. Int. J. Heat Mass Trans. 51(11–12), 3032–3043 (2008)

    MATH  Google Scholar 

  53. O’Brien, J., Sen, M.: Temperature synchronization, phase dynamics and oscillation death in a ring of thermally-coupled rooms. In: Proceedings of the ASME IMECE 2011, Pts A and B, pp. 73–82 (2012)

    Google Scholar 

  54. Sen, M.: Effect of walls on synchronization of thermostatic room-temperature oscillations. Ingeniería Mecánica, Tecnología y Desarrollo 4(3), 81–88 (2012)

    Google Scholar 

  55. Sen, M., Amegashie, I., Cecconi, E., Antsaklis, P.: Dynamics of air and wall temperatures in multiroom buildings. In: Proceedings of the ASME IMECE 2012, vol. 10, pp. 263–272 (2013)

    Google Scholar 

  56. Cai, W., Sen, M., Yang, K.T., McClain, R.L.: Synchronization of self-sustained thermostatic oscillations in a thermal-hydraulic network. Int. J. Mass Transf. 49(23–24), 4444–4453 (2006)

    MATH  Google Scholar 

  57. Barron, M.A., Sen, M.: Synchronization of temperature oscillations in heated plates with hysteretic on-off control. Appl. Therm. Eng. 65(1–2), 337–342 (2014)

    Google Scholar 

  58. Kitahata, H., Taguchi, J., Nagayama, M., Sakurai, T., Ikura, Y., Osa, A., Sumino, Y., Tanaka, M., Yokoyama, E., Miike, H.: Oscillation and synchronization in the combustion of candles. J. Phys. Chem. A 113(29), 8164–8168 (2009)

    Google Scholar 

  59. Crandall, S.H.: Foreward in [11]

    Google Scholar 

  60. Kuznetsov, Y.I., Minakova, I.I., Tshedrina, M.I.: Mutual synchronization mechanisms of 2 resonance coupled oscillators. Vestnik Moskovskogo Universiteta Seriya 3 Fizika Astronomiya, 31(3), 94–96 (1990)

    Google Scholar 

  61. Dimentberg, M., Cobb, E., Mensching, J.: Self-synchronization of transient rotations in multiple-shaft systems. J. Vib. Control 7(2), 221–232 (2001)

    MATH  Google Scholar 

  62. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    MATH  Google Scholar 

  63. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143(1–4), 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Moreno, Y., Pacheco, A.F.: Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68(4), 603–609 (2004)

    Google Scholar 

  65. Dolmatova, A.V., Goldobin, D.S., Pikovsky, A.: Synchronization of coupled active rotators by common noise. Phys. Rev. E, 96(6) (2017)

    Google Scholar 

  66. Boccara, N.: Modeling Complex Systems. Springer, New York (2004)

    MATH  Google Scholar 

  67. Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T.: Applications of artificial neural networks and genetic methods in thermal engineering. In: Chhabra, R. (ed.) The CRC Handbook of Thermal Engineering, pp. 1217–1269, Section 4.27. CRC Press, Boca Raton, FL (2017)

    Google Scholar 

  68. Barron, M.A., Sen, M.: Dynamic behavior of a large ring of coupled self-excited oscillators. J. Comput. Nonlinear Dyn. 8(3) (2013)

    Google Scholar 

  69. Barron, M.A., Sen, M., Corona, E.: Dynamics of large rings of coupled Van der Pol oscillators. In: Elleithy, K. (ed.) Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, pp. 346–349 (2008); International Conference on Systems, Computing Science and Software Engineering, Electr Network, 03–12 Dec 2007

    Google Scholar 

  70. Barron, M.A., Sen, M.: Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn. 56(4), 357–367 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Kuznetsov, A.P., Roman, J.P.: Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators. Broadband synchronization. Phys. D-Nonlinear Phenom. 38(6), 499–1506 (2009)

    MathSciNet  MATH  Google Scholar 

  72. Kibirkstis, E., Pauliukaitis, D., Miliunas, V., Ragulskis, K.: Synchronization of pneumatic vibroexciters under air cushion operating mode in a self-exciting autovibration regime. J. Mech. Sci. Technol. 31(9), 4137–4144 (2017)

    Google Scholar 

  73. Sun, Z., Xiao, R., Yang, X., Xu, W.: Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators. Chaos 28(3) (2018)

    Google Scholar 

  74. Vinod, V., Balaram, B., Narayanan, M.D., Sen, M.: Effect of oscillator and initial condition differences in the dynamics of a ring of dissipative coupled van der Pol oscillators. J. Mech. Sci. Technol. 29(5), 1931–1939 (2015)

    Google Scholar 

  75. Zhang, X., Wen, B., Zhao, C.: Theoretical study on synchronization of two exciters in a nonlinear vibrating system with multiple resonant types. Nonlinear Dyn. 85(1), 141–154 (2016)

    MathSciNet  Google Scholar 

  76. Jiang, H., Liu, Y., Zhang, L., Yu, J.: Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators. Commun. Nonlinear Sci. Numer. Simul. 39, 199–208 (2016)

    MathSciNet  Google Scholar 

  77. Hou, Y., Fang, P., Nan, Y., Du, M.: Synchronization investigation of vibration system of two co-rotating rotors with energy balance method. Adv. Mech. Eng. 8(1) (2016)

    Google Scholar 

  78. Fang, P., Hou, Y.: Synchronization characteristics of a rotor-pendula system in multiple coupling resonant systems. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 232(10), 1802–1822 (2018)

    Google Scholar 

  79. Vinod, V., Balaram, B., Narayanan, M.D., Sen, M.: Effect of configuration symmetry on synchronization in a Van der Pol ring with nonlocal interactions. Nonlinear Dyn. 89(3), 2103–2114 (2017)

    Google Scholar 

  80. Pantaleone, J.: Synchronization of metronomes. J. Phys. 70, 992 (2002)

    Google Scholar 

  81. Oud, W.T.: Design and experimental results of synchronizing metronomes, inspired by Christiaan Huygens. Master’s thesis, Eindhoven University of Technology, Eindhoven, Department of Mechanical Engineering (2006)

    Google Scholar 

  82. Kuznetsov, N.V., Leonov, G.A., Nijmeijer, H., Pogromsky, A.: Synchronization of two metronomes. IFAC Proc. 40(14), 49–52 (2007)

    Google Scholar 

  83. Martens, E.A., Thutupalli, S., Fourriere, A., Hallatschek, O.: Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 110(26), 10563–10567 (2013)

    Google Scholar 

  84. Hoskoti, L., Misra, A., Sucheendran, M.M.: Frequency lock-in during vortex induced vibration of a rotating blade. J. Fluids Struct. 80, 145–164 (2018)

    Google Scholar 

  85. Barron, M.A., Sen, M.: Synchronization of coupled self-excited elastic beams. J. Sound Vib. 324(1–2), 209–220 (2009)

    Google Scholar 

  86. Wang, D., Zhao, C., Yao, H., Wen, B.: Vibration synchronization of a vibrating system driven by two motors. Adv. Vib. Eng. 11(1), 59–73 (2012)

    Google Scholar 

  87. Zhang, X.-L., Wen, B.-C., Zhao, C.-Y.: Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion. Acta Mech. Sin. 28(5), 1424–1435 (2012)

    MathSciNet  MATH  Google Scholar 

  88. Wang, D., Chen, Y., Hao, Z., Cao, Q.: Bifurcation analysis for vibrations of a turbine blade excited by air flows. Sci. China-Technol. Sci. 59(8), 1217–1231 (2016)

    Google Scholar 

  89. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Appl. Math. Mech.-Eng. Ed. 37(9), 1251–1274 (2016)

    MathSciNet  MATH  Google Scholar 

  90. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica 51(11, SI), 2607–2628 (2016)

    Google Scholar 

  91. Wang, D., Hao, Z., Chen, Y., Zhang, Y.: Dynamic and resonance response analysis for a turbine blade with varying rotating speed. J. Theor. Appl. Mach. 56(1), 31–42 (2018)

    Google Scholar 

  92. Oppenheim, A.V., Willsky, A.S., Hamid, S.: Signals and Systems. Pearson, 2nd edn. (1996)

    Google Scholar 

  93. Haykin, S., Van Veen, B. Signals and Systems. Wiley (2002)

    Google Scholar 

  94. Porat, B.: Digital Processing of Random Signals: Theory and Methods. Dover (2008)

    Google Scholar 

  95. Jáuregui, J.C., Sen, M., López-Cajún, C.S.: Experimental characterization of synchronous vibration of blades. In: Proceedings of the ASME Turbo Expo 2011, Pts A and B, vol. 6, pp. 821–828 (2012)

    Google Scholar 

Download references

Acknowledgements

This is to gratefully acknowledge the participation of Professor Juan Carlos Jáuregui Correa of the Universidad Autónoma de Querétaro who has been a co-author in some of the publications on which this review is based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos S. López Cajún .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, M., López Cajún, C.S. (2019). Review of Synchronization in Mechanical Systems. In: Jauregui, J. (eds) Nonlinear Structural Dynamics and Damping. Mechanisms and Machine Science, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-13317-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13317-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13316-0

  • Online ISBN: 978-3-030-13317-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics