Skip to main content
Log in

Calcium-activated K+ channels: Metabolic regulation

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Calcium-activated potassium (KCa) channels are highly modulated by a large spectrum of metabolites. Neurotransmitters, hormones, lipids, and nucleotides are capable of activating and/or inhibiting KCa channels. Studies from the last few years have shown that metabolites modulate the activity of KCa channels via: (1) a change in the affinity of the channel for Ca2+ (K1/2 is modified), (2) a parallel shift in the voltage axis of the acitvation curves, or (3) a change in the slope (effective valence) of the voltage dependence curve. The shift of the voltage dependence curve can be a direct consequence of the change in the affinity for Ca2+. Recently, the mechanistic steps involved in the modulation of KCa channels are being uncovered. Some interactions may be direct on KCa channels and others may be mediated via G-proteins, second messengers, or phosphorylation. The information given in this review highlights the possibility that KCa channels can be activated or inhibited by metabolites without a change in the intracellular Ca2+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bean, B. P. (1989).Annu. Rev. Physiol. 51, 367–384.

    Google Scholar 

  • Benham, C. D., and Bolton, T. B. (1986).J. Physiol. 381, 385–406.

    Google Scholar 

  • Bingham, S. J. (1986).Am. J. Physiol. 250, F759-F769.

    Google Scholar 

  • Birnbaumer, L., Codina, J., Mattera, R., Yatani, A., Scherer, N., Toro, M.-J., and Brown, A. M. (1987).Kidney Int. 32, S14-S37.

    Google Scholar 

  • Birnbaumer, L., VanDongen, A. M. J., Codina, J., Yatani, A., Mattera, R., Graf, R., and Brown, A. M. (1989). InSecretion and Its Control (Armstrong, C. M. and Oxford, G. S., eds.), Rockefeller University Press, New York, pp. 17–54.

    Google Scholar 

  • Bolotina, V., Omelyanenko, V., Heyes, B., Ryan, U., and Bregestovski, P. (1989).Pflügers Arch. 415, 262–268.

    Google Scholar 

  • Brown, A. M., and Birnbaumer, L. (1988).Am. J. Physiol. 254, H401-H410.

    Google Scholar 

  • Brown, A. M., and Birnbaumer, L. (1990).Annu. Rev. Physiol. 52, 197–213.

    Google Scholar 

  • Carl, A., and Sanders, K. M. (1989).Am. J. Physiol. 257, C470-C480.

    Google Scholar 

  • Cole, W. C., and Sanders, K. M. (1989).Am. J. Physiol. 257, C596-C600.

    Google Scholar 

  • Cole, W. C., Carl, A., and Sanders, K. M. (1989).Am. J. Physiol. 257, C481-C487.

    Google Scholar 

  • Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M., and Selinger, Z. (1979).J. Biol. Chem. 254, 9829–9834.

    Google Scholar 

  • Edwards, K. M., Jackson, B. A., and Dousa, T. P. (1980).Am. J. Physiol. 238, F269-F278.

    Google Scholar 

  • Ewald, D. A., Williams, A., and Levitan, I. B. (1985).Nature (London)315, 503–506.

    Google Scholar 

  • Gilman, A. G. (1987).Annu. Rev. Biochem. 56, 615–649.

    Google Scholar 

  • Guggino, S. E., Suarez-Isla, B. A., Guggino, W. B., and Sacktor, B. (1985).Am. J. Physiol. 249, F448-F455.

    Google Scholar 

  • Haas, H. L., and Konnerth, A. (1983).Nature (London)302, 432–434.

    Google Scholar 

  • Hamilton, S. L., Mejia-Alvarez, R., Fill, M., Hawkes, M. J., Brush, K. L., Schilling, W. P., and Stefani, E. (1989).Anal. Biochem. 183, 31–41.

    Google Scholar 

  • Higashida, H., and Brown, D. A. (1986).Nature (London)323, 333–335.

    Google Scholar 

  • Katz, G., Roy-Contancin, L., Bale, T., and Reuben, J. P. (1990).Biophys. J. 57, 506a.

    Google Scholar 

  • Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Bar-Sagi, D., and Clapham, D. E. (1989).Nature (London)337, 557–560.

    Google Scholar 

  • Kume, H., Takai, A., Tokumo, H., and Tomita, T. (1989).Nature (London)341, 152–154.

    Google Scholar 

  • Kurachi, Y., Ito, H., Sugimoto, T., Shimizu, T., Miki, I., and Ui, M. (1989).Nature (London)337, 555–557.

    Google Scholar 

  • Latorre, R., Vergara, C., and Hidalgo, C. (1982).Proc. Natl. Acad. Sci. USA 79, 805–809.

    Google Scholar 

  • Latorre, R., Oberhauser, A., Labarca, P., and Alvarez, O. (1989).Annu. Rev. Physiol. 51, 385–399.

    Google Scholar 

  • Lazdunski, M. (1988).Am. J. Med. 84, Suppl. 1B, 3–9.

    Google Scholar 

  • Madison, D. V., and Nicoll, R. A. (1982).Nature (London)299, 636–638.

    Google Scholar 

  • Mason, W. T., and Waring, D. W. (1986).Neuroendocrinology 43, 205–219.

    Google Scholar 

  • Mayer, E. A., Loo, D. D. F., Kodner, A., and Narashima Reddy, S. (1989).Am. J. Physiol. 257, G887–897.

    Google Scholar 

  • Mayer, E. A., Loo, D. D. F., Snape, W. J., Jr, and Sachs, G. (1990).J. Physiol. 420, 47–71.

    Google Scholar 

  • Miller, C., and Racker, E. (1976).J. Membr. Biol. 30, 283–300.

    Google Scholar 

  • Morris, A. P., Gallacher, D. V., Irvine, R. F., and Petersen, O. H. (1987).Nature (London)330, 653–655.

    Google Scholar 

  • Neliat, G., Masson, F., and Gargouil, Y. M. (1989).Pflügers Arch. 414, S186-S187.

    Google Scholar 

  • Ordway, R. W., Clapp, L. H., Gurney, A. M., Singer, J. J., and Walsh, J. V., Jr. (1989).J. Gen. Physiol. 94, 37a.

    Google Scholar 

  • Ramos-Franco, J., Toro, L., and Stefani, E. (1989).Biophys. J. 55, 536a.

    Google Scholar 

  • Ramos-Franco, J., Toro, L., and Stefani, E. (1990).Biophys. J. 57, 112a.

    Google Scholar 

  • Sadoshima, J.-I., Akaike, N., Kanaide, H., and Nakamura, M. (1988).Am. J. Physiol. 255, H754-H759.

    Google Scholar 

  • Sauvé, R., Simoneau, C., Parent, L., Monette, R., and Roy, G. (1987).J. Membr. Biol. 96, 199–208.

    Google Scholar 

  • Shangold, G. A., Murphy, S. N., and Miller, R. J. (1988).Proc. Natl. Acad. Sci. USA 85, 6566–6570.

    Google Scholar 

  • Sikdar, S. K., McIntosh, R. P., and Mason, W. T. (1989).Brain Res. 496, 113–123.

    Google Scholar 

  • Toro, L., Ramos-Franco, J., and Stefani, E. (1990a).J. Gen. Physiol. 96, 373–394.

    Google Scholar 

  • Toro, L., Amador, M., and Stefani, E. (1990b).Am. J. Physiol. 258, H912-H915.

    Google Scholar 

  • Turgeon, J. L., and Waring, D. W. (1986).Am. J. Physiol. 250, E62-E68.

    Google Scholar 

  • Williams, D. L., Jr., Katz, G. M., Roy-Contancin, L., and Reuben, J. P. (1988).Proc. Natl. Acad. Sci. USA 85, 9360–9364.

    Google Scholar 

  • Yoshida, S., Plant, S., McNiven, A. I., and House, C. R. (1990).Pflügers Arch. 415, 516–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toro, L., Stefani, E. Calcium-activated K+ channels: Metabolic regulation. J Bioenerg Biomembr 23, 561–576 (1991). https://doi.org/10.1007/BF00785811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00785811

Key Words

Navigation