Skip to main content

Calcium-Activated K+ Channels (KCa) and Therapeutic Implications

  • Chapter
  • First Online:
Pharmacology of Potassium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 267))

Abstract

Potassium channels are the most diverse and ubiquitous family of ion channels found in cells. The Ca2+ and voltage gated members form a subfamily that play a variety of roles in both excitable and non-excitable cells and are further classified on the basis of their single channel conductance to form the small conductance (SK), intermediate conductance (IK) and big conductance (BK) K+ channels.

In this chapter, we will focus on the mechanisms underlying the gating of BK channels, whose function is modified in different tissues by different splice variants as well as the expanding array of regulatory accessory subunits including β, γ and LINGO subunits. We will examine how BK channels are modified by these regulatory subunits and describe how the channel gating is altered by voltage and Ca2+ whilst setting this in context with the recently published structures of the BK channel. Finally, we will discuss how BK and other calcium-activated channels are modulated by novel ion channel modulators and describe some of the challenges associated with trying to develop compounds with sufficient efficacy, potency and selectivity to be of therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PR, Constanti A, Brown DA, Clark RB (1982) Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296(5859):746–749

    Article  CAS  PubMed  Google Scholar 

  • Addy ME, Awumey EM (1984) Effects of the extracts of desmodium adscendens on anaphylaxis. J Ethnopharmacol 11(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74(1):245–269

    Article  CAS  PubMed  Google Scholar 

  • Almassy J, Begenisich T (2012) The LRRC26 protein selectively alters the efficacy of BK channel activators. Mol Pharmacol 81:21–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nakkash L, Hu S, Li M, Hwang TC (2001) A common mechanism for cysticfibrosis transmembrane conductance regulator protein activation by genistein andbenzimidazolone analogs. J Pharmacol Exp Ther 296:464–472

    CAS  PubMed  Google Scholar 

  • Arshad SH, Bateman B, Sadeghnejad A, Gant C, Matthews SM (2007) Andolast, a novel calcium-activated potassium-channel opener, inhibits AMP and exercise induced bronchoconstriction in asthma. J Allergy Clin Immunol 119(2):307–313

    Article  PubMed  Google Scholar 

  • Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253(5019):551–555

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Cox DH (2005) Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its β1 subunit. J Gen Physiol 126(4):393–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72(4):1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Bentzen BH, Olesen SP, Rønn LCB, Grunnet M (2014) BK channel activators and their therapeutic perspectives. Front Physiol 5:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80(2):555–592

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23(37):11681–11691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocksteins E (2016) Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol 147(2):105–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozik ME, Smith JM, Sullivan MA, Braga JM, Warach S, Luby M (2000) POST: double-blind placebo controlled, safety and efficacy trial of intravenous BMS-204352 in patients with acute stroke. Stroke 31:1–269

    Google Scholar 

  • Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256(5056):532–535

    Article  CAS  PubMed  Google Scholar 

  • Brelidze TI, Magleby KL (2005) Probing the geometry of the inner vestibule of BK channels with sugars. J Gen Physiol 126(2):105–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brelidze TI, Niu X, Magleby KL (2003) A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc Natl Acad Sci 100(15):9017–9022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000a) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275(9):6453–6461

    Article  CAS  PubMed  Google Scholar 

  • Brenner R, Peréz GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000b) Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407(6806):870–876

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261(5118):221–224

    Article  CAS  PubMed  Google Scholar 

  • Calderone V, Chericoni S, Martinelli C, Testai L, Nardi A, Morelli I, Breschi MC, Martinotti E (2004) Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels. Naunyn Schmiedeberg's Arch Pharmacol 370(4):290–298

    Article  CAS  Google Scholar 

  • Castillo K, Contreras GF, Pupo A, Torres YP, Neely A, González C, Latorre R (2015) Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels. Proc Natl Acad Sci 112(15):4809–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle NA, London DO, Creech C, Fajloun Z, Stocker JW, Sabatier JM (2003) Maurotoxin: a potent inhibitor of intermediate conductance Ca2+ activated potassium channels. Mol Pharmacol 63(2):409–418

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yan J, Aldrich RW (2014) BK channel opening involves side-chain reorientation of multiple deep-pore residues. Proc Natl Acad Sci 111(1):79–88

    Article  CAS  Google Scholar 

  • Cheney JA, Weisser JD, Bareyre FM, Laurer HL, Saatman KE, Raghupathi R, Gribkoff V, Starrett JE Jr, McIntosh TK (2001) The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J Cereb Blood Flow Metab 21(4):396–403

    Article  CAS  PubMed  Google Scholar 

  • Christophersen P, Wulff H (2015) Pharmacological gating modulation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.X and KCa3.1). Channels 9(6):336–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman N, Brown BM, Oliván-Viguera A, Singh V, Olmstead MM, Valero MS, Köhler R, Wulff H (2014) New positive Ca2+ activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol 86(3):342–357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conejo-Garcia A, Campos J (2008) Bis-quinolinium cyclophanes: highly potent and selective non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. Curr Med Chem 15(13):1305–1315

    Article  CAS  PubMed  Google Scholar 

  • Cotton KD, Hollywood MA, Thornbury KD, McHale NG (1996) Effect of purinergic blockers on outward current in isolated smooth muscle cells of the sheep bladder. Am J Phys Cell Phys 270(3):C969–C973

    CAS  Google Scholar 

  • Cui J, Cox DH, Aldrich RW (1997) Intrinsic voltage dependence and ca2+ regulation of mslo large conductance Ca-activated K+ channels. J Gen Physiol 109(5):647–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Qin G, Yu K, Bowers MS, Zhang M (2014) Targeting the small and intermediate conductance Ca2+ activated potassium channels: the drug-binding pocket at the channel/calmodulin interface. Neurosignals 22(2):65–78

    Article  CAS  PubMed  Google Scholar 

  • D’hoedt D, Hirzel K, Pedarzani P, Stocker M (2004) Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J Biol Chem 279(13):12088–12092

    Article  PubMed  Google Scholar 

  • Delay C, Tremblay C, Brochu E, Paris-Robidas S, Emond V, Rajput AH, Rajput A, Calon F (2014) Increased LINGO1 in the cerebellum of essential tremor patients. Mov Disord 29(13):1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996) Modulation of cl secretion by benzimidazolones. I. Direct activation of a Ca2+ dependent K+ channel. Am J Phys Lung Cell Mol Phys 271(5):L775–L784

    CAS  Google Scholar 

  • Dick GM, Rossow CF, Smirnov S, Horowitz B, Sanders KM (2001) Tamoxifen activates smooth muscle BK channels through the regulatory β1 subunit. J Biol Chem 276(37):34594–34599

    Article  CAS  PubMed  Google Scholar 

  • Ding JP, Li ZW, Lingle CJ (1998) Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys J 74(1):268–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  Google Scholar 

  • Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lüders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37(7):733–738

    Article  CAS  PubMed  Google Scholar 

  • Dudem S, Large RJ, Kulkarni S, McClafferty H, Tikhonova IG, Sergeant GP, Thornbury KD, Shipston MJ, Perrino BA, Hollywood MA (2020) LINGO1 is a regulatory subunit of large conductance, Ca2+−activated potassium channels. Proc Natl Acad Sci 117(4):2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards G, Niederste-Hollenberg A, Schneider J, Noack T, Weston AH (1994) Ion channel modulation by NS 1619, the putative BKCa channel opener, in vascular smooth muscle. Br J Pharmacol 113(4):1538–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber E, Sah P (2007) Functions of SK channels in central neurons. Clin Exp Pharmacol Physiol 34(10):1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Foale S, Berry M, Logan A, Fulton D, Ahmed Z (2017) LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders? Neural Regen Res 12(8):1247–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fodor AA, Aldrich RW (2006) Statistical limits to the identification of ion channel domains by sequence similarity. J Gen Physiol 127(6):755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Calvo M, Knaus HG, McManus OB, Giangiacomo KM, Kaczorowski GJ, Garcia ML (1994) Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem 269(1):676–682

    Article  CAS  PubMed  Google Scholar 

  • Gessner G, Schönherr K, Soom M, Hansel A, Asim M, Baniahmad A, Derst C, Hoshi T, Heinemann SH (2006) BKCa channels activating at resting potential without calcium in LNCaP prostate cancer cells. J Membr Biol 208(3):229–240

    Article  CAS  Google Scholar 

  • Grimm PR, Irsik DL, Settles DC, Holtzclaw JD, Sansom SC (2009) Hypertension of Kcnmb1−/−is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci 106(28):11800–11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grizel AV, Glukhov GS, Sokolova OS (2014) Mechanisms of activation of voltage-gated potassium channels. Acta Nat 6(4):10–26

    Article  CAS  Google Scholar 

  • Haug T, Sigg D, Ciani S, Toro L, Stefani E, Olcese R (2004) Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I. J Gen Physiol 124(2):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugaard MM, Hesselkilde EZ, Pehrson S, Carstensen H, Flethøj M, Præstegaard KF, Sørensen US, Dines JG, Grunnet M, Buhl R, Jespersen T (2015) Pharmacologic inhibition of small conductance calcium activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm 12(4):825–835

    Article  PubMed  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66(4):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks GA, Marrion NV (1998) Ca2+-dependent inactivation of large conductance Ca2+-activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol 508(Pt 3):721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hite R, Tao X, MacKinnon R (2017) Structural basis for gating the high-conductance Ca2+−activated K+ channel. Nature 541(7635):52–57

    Article  CAS  PubMed  Google Scholar 

  • Holland M, Langton PD, Standen NB, Boyle JP (1996) Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117(1):119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma S, Shimada T, Hikake T, Yaginuma H (2009) Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns 9(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Horrigan FT, Aldrich RW (1999) Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca2+. J Gen Physiol 114(2):305–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horrigan FT, Aldrich RW (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120(3):267–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi T, Heinemann SH (2016) Modulation of BK channels by small endogenous molecules and pharmaceutical channel openers. Int Rev Neurobiol 128:193–237

    Article  CAS  PubMed  Google Scholar 

  • Hoshi T, Wissuwa B, Tian Y, Tajima N, Xu R, Bauer M, Heinemann SH, Hou S (2013a) Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc Natl Acad Sci 110(12):4816–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi T, Tian Y, Xu R, Heinemann SH, Hou S (2013b) Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proc Natl Acad Sci 110(12):4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Heinemann SH, Hoshi T (2009) Modulation of BKCa channel gating by endogenous signaling molecules. Physiology 24(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Hougaard C, Jensen ML, Dale TJ, Miller DD, Davies DJ, Eriksen BL, Strøbæk D, Trezise DJ, Christophersen P (2009) Selective activation of the SK1 subtype of human small conductance Ca2+ activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment. Mol Pharmacol 76(3):569–578

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Huang C, Wu S (2007) Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells. J Pharmacol Exp Ther 321(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi Y, Sakamoto K, Yamada A, Hotta A, Ohya S, Muraki K, Uchiyama M, Ohwada T (2002) Molecular basis of pimarane compounds as novel activators of large-conductance Ca2+-activated K+ channel alpha-subunit. Mol Pharmacol 62(4):836–846

    Article  CAS  PubMed  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium activated potassium channel. Proc Natl Acad Sci 94(21):11651–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A et al (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275(3):C848–C856

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002a) The open pore conformation of potassium channels. Nature 417(6888):523–526

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002b) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522

    Article  CAS  PubMed  Google Scholar 

  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci 94(20):11013–11018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, Linang X, Egorova P, Vorontsova D, Christophersen P, Rønn LB, Bezprozvanny I (2012) Selective positive modulator of calcium activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 19(10):1340–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Király I, Pataricza J, Bajory Z, Simonsen U, Varro A, Papp JG, Pajor L, Kun A (2013) Involvement of large-conductance Ca2+-activated K+ channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries. Basic Clin Pharmacol Toxicol 113(1):19–24

    Article  PubMed  CAS  Google Scholar 

  • Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994) Primary sequence and immunological characterization of beta-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J Biol Chem 269(25):17274–17278

    Article  CAS  PubMed  Google Scholar 

  • Kshatri A, Li Q, Yan J, Large RJ, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2016) Differential efficacy of GoSlo-SR compounds on BKα and BKαγ1–4channels. Channels 11(1):66–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kshatri A, Gonzalez-Hernandez A, Giraldez T (2018) Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Front Mol Neurosci 11

    Google Scholar 

  • Kun A, Matchkov VV, Stankevicius E, Nardi A, Hughes AD, Kirkeby HJ, Demnitz J, Simonsen U (2009) NS11021, a novel opener of large-conductance Ca2+-activated K+ channels, enhances erectile responses in rats. Br J Pharmacol 158(6):1465–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam J, Coleman N, Garing AA, Wulff H (2013) The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases. Expert Opin Ther Targets 17(10):1203–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamy C, Goodchild SJ, Weatherall KL, Jane DE, Liégeois J, Seutin V, Marrion NV (2010) Allosteric block of KCa2 channels by apamin. J Biol Chem 285(35):27067–27077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Large RJ, Kshatri A, Webb TI, Roy S, Akande A, Bradley E, Sergeant GP, Thornbury KD, McHale NG, Hollywood MA (2015) Effects of the novel BK (KCa1.1) channel opener GoSlo-SR-5-130 are dependent on the presence of BKβsubunits. Br J Pharmacol 172(10):2544–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laumonnier F, Roger S, Guérin P, Molinari F, M’Rad R, Cahard D, Belhadj A, Halayem M, Persico AM, Elia M, Romano V, Holbert S, Andres C, Chaabouni H, Colleaux L, Constant J, Le Guennec JY, Briault S (2006) Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatr 163(9):1622–1629

    Article  PubMed  Google Scholar 

  • Layne JJ, Nausch B, Olesen S-P, Nelson MT (2010) BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am J Physiol 298(2):R378–R384

    CAS  Google Scholar 

  • Leonetti MD, Yuan P, Hsiung Y, Mackinnon R (2012) Functional and structural analysis of the human SLO3 pH- and voltage-gated K+ channel. Proc Natl Acad Sci 109(47):19274–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Aldrich RW (2004) Unique inner pore properties of BK channels revealed by quaternary ammonium block. J Gen Physiol 124(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen S, Wu S (2000) Evidence for the stimulatory effect of resveratrol on Ca2+−activated K+ current in vascular endothelial cells. Cardiovasc Res 45(4):1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Lingle CJ (2007) Gating rings formed by RCK domains: keys to gate opening. J Gen Physiol 129(2):101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lo Y, Wu S (2003) Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res 959(1):86–97

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhang Z, Liu H, Hou P, Lang J, Wang S, Yan H, Li P, Huang Z, Wu H, Rong M, Huang J, Wang H, Lv L, Qiu M, Ding J, Lai R (2013) Human β-Defensin 2 is a novel opener of Ca2+-activated potassium channels and induces vasodilation and hypotension in monkeys. Hypertension 62(2):415–425

    Article  CAS  PubMed  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium activated Potassium Channel in human T lymphocytes. J Biol Chem 272(52):32723–32726

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005a) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309(5736):897–903

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005b) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309(5736):903–908

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Klem AM, Ramu Y (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120(5):663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Lou XJ, Horrigan FT (2006) Role of charged residues in the S1–S4 voltage sensor of BK channels. J Gen Physiol 127(3):309–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magleby KL (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121(2):81–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malerba M, D’Amato M, Radaeli A, Giacovelli G, Rovati L, Arshad S, Holgate S (2015) Efficacy of andolast in mild to moderate asthma: a randomized, controlled, double-blind multicenter study (the Andast trial). Curr Pharm Des 21(26):3835–3843

    Article  CAS  PubMed  Google Scholar 

  • McManus OB, Harris GH, Giangiacomo KM, Feigenbaum P, Reuben JP, Addy ME, Burka JF, Kaczorowski GJ, Garcia ML (1993) An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 32(24):6128–6133

    Article  CAS  PubMed  Google Scholar 

  • McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14(3):645–650

    Article  CAS  PubMed  Google Scholar 

  • Meera P, Wallner M, Jiang Z, Toro L (1996) A calcium switch for the functional coupling between α (hslo) and β subunits (Kv,Caβ) of maxi K channels. FEBS Lett 385(1–2):127–128

    CAS  PubMed  Google Scholar 

  • Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage and calcium dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci 94(25):14066–14071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279(35):36746–36752

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13(10):1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Blake Pepinsky R, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27(7):493–503

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+ activated K+ channels from mammalian skeletal muscle. Nature 313(6000):316–318

    Article  CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T, Sakamoto K, Sade H, Ohya S, Muraki K, Imaizumi Y (2007) Voltage-sensitive oxonol dyes are novel large-conductance Ca2+-activated K+ channel activators selective for β1 and β4 but not for β2 subunits. Mol Pharmacol 71(4):1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Morrow JP, Zakharov SI, Liu G, Yang L, Sok AJ, Marx SO (2006) Defining the BK channel domains required for β1-subunit modulation. Proc Natl Acad Sci 103(13):5096–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosyak L, Wood A, Dwyer B, Buddha M, Johnson M, Aulabaugh A, Zhong X, Presman E, Benard S, Kelleher K, Wilhelm J, Stahl ML, Kriz R, Gao Y, Cao Z, Ling HP, Pangalos MN, Walsh FS, Somers WS (2006) The structure of the Lingo-1 ectodomain, a module implicated in central nervous system repair inhibition. J Biol Chem 281(47):36378–36390

    Article  CAS  PubMed  Google Scholar 

  • Nagano N, Imaizumi Y, Hirano M, Watanabe M (1996) Opening of Ca2+-dependent K+ channels by nordihydroguaiaretic acid in porcine coronary arterial smooth muscle cells. Jpn J Pharmacol 70(3):281–284

    Article  CAS  PubMed  Google Scholar 

  • Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15(11):1126–1146

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415–1459

    Article  CAS  PubMed  Google Scholar 

  • Nimigean CM, Magleby KL (2000) Functional coupling of the β1 subunit to the large conductance Ca2+-activated K+ channel in the absence of Ca2+. Increased Ca2+ sensitivity from a Ca2+-independent mechanism. J Gen Physiol 115(6):719–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Qian X, Magleby KL (2004) Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42(5):745–756

    Article  CAS  PubMed  Google Scholar 

  • Nolting A, Ferraro T, D'hoedt D, Stocker M (2007) An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J Biol Chem 282(6):3478–3486

    Article  CAS  PubMed  Google Scholar 

  • Olesen SP, Munch E, Moldt P, Drejer J (1994) Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 251(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Orio P, Latorre R (2005) Differential effects of β1 and β2 subunits on BK channel activity. J Gen Physiol 125(4):395–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 17:156–161

    CAS  PubMed  Google Scholar 

  • Pallanck L, Ganetzky B (1994) Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Genet 3(8):1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Parajuli SP, Soder RP, Hristov KL, Petkov GV (2011) Pharmacological activation of small conductance calcium activated potassium channels with Naphtho[1,2-d]thiazol-2-ylamine decreases Guinea pig detrusor smooth muscle excitability and contractility. J Pharmacol Exp Ther 340(1):114–123

    Article  PubMed  CAS  Google Scholar 

  • Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh C (2003) Effects of intermediate conductance Ca2+ activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471(3):157–164

    Article  CAS  PubMed  Google Scholar 

  • Pedarzani P, D’hoedt D, Doorty KB, Wadsworth JD, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM, Stocker M, Strong PN (2002) Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J Biol Chem 277(48):46101–46109

    Article  CAS  PubMed  Google Scholar 

  • Ptacek LJ, Fu YH (2004) Channels and disease. Arch Neurol 61(11):1665

    Article  PubMed  Google Scholar 

  • Quirk JC, Reinhart PH (2001) Identification of a novel tetramerization domain in large conductance KCa channels. Neuron 32(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Kunze DL, Boyd AE (1990) Ion channels and insulin secretion. Diabetes Care 13(3):340–363

    Article  CAS  PubMed  Google Scholar 

  • Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11(4):645–655

    Article  CAS  PubMed  Google Scholar 

  • Roxburgh CJ, Ganellin CR, Shiner MA, Benton DC, Dunn PM, Ayalew Y, Jenkinson DH (1996) The synthesis and some pharmacological actions of the enantiomers of the K+ channel blocker cetiedil. J Pharm Pharmacol 48(8):851–859

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Morayo Akande A, Large RJ, Webb TI, Camarasu C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2012) Structure-activity relationships of a novel group of large-conductance Ca2+-activated K+ (BK) channel modulators: the GoSlo-SR family. ChemMedChem 7(10):1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Large RJ, Akande AM, Kshatri A, Webb TI, Domene C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2014) Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur J Med Chem 75:426–437

    Article  CAS  PubMed  Google Scholar 

  • Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7(12):921–931

    Article  CAS  PubMed  Google Scholar 

  • Sandhiya S, Dkhar SA (2009) Potassium channels in health, disease & development of channel modulators. Indian J Med Res 129(3):223–232

    CAS  PubMed  Google Scholar 

  • Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci 101(25):9474–9478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schewe M, Sun H, Mackenzie A, Pike A, Schulz F, Constantin C, Kiper AK, Conrad LJ, Gonzalez W, DeGroot BL, Decher N, Fakler B, Carpenter EP, Tucker SJ, Baukrowitz T (2019) A pharmacological masterkey mechanism to unlock the selectivity filter gate in K+ channels. Biophys J 116(3):301a–302a

    Article  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73(3):1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrøder R, Jespersen T, Christophersen P, Strøbæk D, Jensen B, Olesen S (2001) KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology 40(7):888–898

    Article  PubMed  Google Scholar 

  • Scornik FS, Bucciero RS, Wu Y, Selga E, Bosch Calero C, Brugada R, Pérez GJ (2013) DiBAC4(3) hits a “sweet spot” for the activation of arterial large-conductance Ca2+−activated potassium channels independently of the β1-subunit. Am J Phys Heart Circ Phys 304(11):H1471–H1482

    CAS  Google Scholar 

  • Scuvée-Moreau J, Boland A, Graulich A, Overmeire LV, D'hoedt D, Graulich-Lorge F, Thomas E, Abras A, Stocker M, Liégeois J, Seutin V (2004) Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. Br J Pharmacol 143(6):753–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Syme CA, Singh KA, Devor DC, Bridges RJ (2001) Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 296(2):600–611

    CAS  PubMed  Google Scholar 

  • Soder RP, Parajuli SP, Hristov KL, Rovner ES, Petkov GV (2013) SK channel-selective opening by SKA-31 induces hyperpolarization and decreases contractility in human urinary bladder smooth muscle. Am J Phys Regul Integr Comp Phys 304(2):R155–R163

    CAS  Google Scholar 

  • Solaro CR, Lingle CJ (1992) Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel. Science 257(5077):1694–1698

    Article  CAS  PubMed  Google Scholar 

  • Solaro CR, Ding JP, Li ZW, Lingle CJ (1997) The cytosolic inactivation domains of BKi channels in rat chromaffin cells do not behave like simple, open-channel blockers. Biophys J 73(2):819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen US, Strøbæk D, Christophersen P, Hougaard C, Jensen ML, Nielsen E, Peters D, Teuber L (2008) Synthesis and structure activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators of small conductance Ca2+−activated K+channels. J Med Chem 51(23):7625–7634

    Article  PubMed  CAS  Google Scholar 

  • Stefani E, Ottolia M, Noceti F, Olcese R, Wallner M, Latorre R, Toro L (1997) Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hslo). Proc Natl Acad Sci 94(10):5427–5431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strøbæk D, Teuber L, Jørgensen TD, Ahring PK, Kjær K, Hansen RS, Olesen SP, Christophersen P, Skaaning-jensen B (2004) Activation of human IK and SK Ca2+ activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta Biomembr 1665(1–2):1–5

    Article  CAS  Google Scholar 

  • Strøbæk D, Hougaard C, Johansen TH, Sørensen US, Nielsen E, Nielsen KS, Taylor R, Pedarzani P, Christophersen P (2006) Inhibitory gating modulation of small conductance Ca2+ activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 70(5):1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Sun J, MacKinnon R (2017) Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169:1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Adhikari S, Zou S, Horrigan FT (2012) The interaction of voltage-sensor and gate in BK channels. Biophys J 102(3):684a

    Google Scholar 

  • Sweet TB, Cox DH (2008) Measurements of the BKCa channel’s high-affinity Ca2+ binding constants: effects of membrane voltage. J Gen Physiol 132(5):491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syme CA, Gerlach AC, Singh AK, Devor DC (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca2+ activated K+ channels. Am J Phys Cell Phys 278(3):C570–C581

    CAS  Google Scholar 

  • Tanaka Y, Meera P, Song M, Knaus HG, Toro L (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 502(Pt 3):545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, MacKinnon R (2019) Molecular structures of the human Slo1 K+ channel in complex with β4. eLife 8

    Google Scholar 

  • Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541(7635):46–51

    Article  CAS  PubMed  Google Scholar 

  • Terstappen GC, Pellacani A, Aldegheri L, Graziani F, Carignani C, Pula G, Virginio C (2003) The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci Lett 346(1–2):85–88

    Article  CAS  PubMed  Google Scholar 

  • Tristani-Firouzi M, Chen J, Sanguinetti MC (2002) Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels. J Biol Chem 277(21):18994–19000

    Article  CAS  PubMed  Google Scholar 

  • Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275(30):23211–23218

    Article  CAS  PubMed  Google Scholar 

  • Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285(5435):1929–1931

    Article  CAS  PubMed  Google Scholar 

  • Wallner M, Meera P, Ottolia M, Kaczorowski GJ, Latorre R, Garcia ML, Stefani E, Toro L (1995) Characterization of and modulation by a β-subunit of a human maxi KCa channel cloned from myometrium. Receptors Channels 3(3):185–199

    CAS  PubMed  Google Scholar 

  • Wallner M, Meera P, Toro L (1996) Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci 93(25):14922–14927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci 96(7):4137–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Rothberg BS, Brenner R (2006) Mechanism of β4 subunit modulation of BK channels. J Gen Physiol 127(4):449–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb TI, Kshatri AS, Large RJ, Akande AM, Roy S, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA (2015) Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: involvement of the S4/S5 linker and the S6 segment. Proc Natl Acad Sci 112(7):2064–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57(4):463–472

    Article  CAS  PubMed  Google Scholar 

  • Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20(10):3563–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkens CM, Aldrich RW (2006) State-independent block of BK channels by an intracellular quaternary ammonium. J Gen Physiol 128(3):347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittekindt O, Schmitz A, Lehmann-Horn F, Hänsel W, Grissmer S (2006) The human Ca2+ activated K+ channel, IK, can be blocked by the tricyclic antihistamine promethazine. Neuropharmacology 50(4):458–467

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466(7304):393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RS, Liu G, Zakharov SI, Chudasama N, Motoike H, Karlin A, Marx SO (2013) Positions of β2 and β3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. J Gen Physiol 141(1):105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier J, Shakkottai V (2007) Modulators of small and intermediate conductance calcium activated potassium channels and their therapeutic indications. Curr Med Chem 14(13):1437–1457

    Article  CAS  PubMed  Google Scholar 

  • Xia XM, Ding JP, Lingle CJ (1999) Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 19(13):5255–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ (2000) Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci 20(13):4890–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418(6900):880–884

    Article  CAS  PubMed  Google Scholar 

  • Xia XM, Ding JP, Lingle CJ (2003) Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121(2):125–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Garver H, Galligan JJ, Fink GD (2011) Large-conductance Ca2+−activated K+ channel β1-subunit knockout mice are not hypertensive. Am J Phys Heart Circ Phys 300(2):H476–H485

    CAS  Google Scholar 

  • Yan J, Aldrich RW (2010) LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466(7305):513–516

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Aldrich RW (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci 109(20):7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang G, Shi J, Lee US, Delaloye K, Cui J (2008) Subunit-specific effect of the voltage sensor domain on Ca2+ sensitivity of BK channels. Biophys J 94(12):4678–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Krishnamoorthy G, Saxena A, Zhang G, Shi J, Yang H, Delaloye K, Sept D, Cui J (2010) An epilepsy/dyskinesia-associated mutation enhances BK Channel activation by potentiating Ca2+ sensing. Neuron 66(6):871–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang G, Cui J (2015) BK channels: multiple sensors, one activation gate. Front Physiol 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye S, Li Y, Chen L, Jiang Y (2006) Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126(6):1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Yuan A, Dourado M, Butler A, Walton N, Wei A, Salkoff L (2000) SLO-2, a K+ channel with an unusual Cl dependence. Nat Neurosci 3(8):771–779

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 a resolution. Science 329(5988):182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2011) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481(7379):94–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zakharov SI, Morrow JP, Liu G, Yang L, Marx SO (2005) Activation of the BK (SLO1) potassium channel by mallotoxin. J Biol Chem 280:30882–30887

    Article  CAS  PubMed  Google Scholar 

  • Zavaritskaya O, Dudem S, Ma D, Rabab KE, Albrecht S, Tsvetkov D, Kassmann M, Thornbury KD, Maldenov M, Kammermeier C, Sergeant G, Mullins N, Wouappi O, Wurn H, Kannet A, Gollasch M, Hollywood MA, Schubert R (2020) Vasodilation of rat skeletal muscle arteries by the novel BK channel opener GoSlo is mediated by the simultaneous activation of BK and Kv7 channels. Br J Pharmacol 177(5):1164–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng XH, Xia XM, Lingle CJ (2005) Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J Gen Physiol 125(3):273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yan J (2014) Regulation of BK channels by auxiliary γ subunits. Front Physiol 5:401

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YY, Han X, Liu Y, Chen J, Hua L, Ma Q, Huang YY, Tang QY, Zhang Z (2018) +mRNA expression of LRRC55 protein (leucine-rich repeat-containing protein 55) in the adult mouse brain. Plos One 13(1):e0191749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex at 2.0 a resolution. Nature 414(6859):43–48

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Xia X-M, Lingle CJ (2011) Cysteine scanning and modification reveal major differences between BK channels and Kv channels in the inner pore region. Proc Natl Acad Sci 108(29):12161–12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors work has been funded by the BREATH project by the EU, under the Interreg VA Programme, managed by the Special EU Programmes Body (to KT, GS & MH). SD is funded by Dundalk Institute of Technology Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hollywood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dudem, S., Sergeant, G.P., Thornbury, K.D., Hollywood, M.A. (2021). Calcium-Activated K+ Channels (KCa) and Therapeutic Implications. In: Gamper, N., Wang, K. (eds) Pharmacology of Potassium Channels. Handbook of Experimental Pharmacology, vol 267. Springer, Cham. https://doi.org/10.1007/164_2021_459

Download citation

Publish with us

Policies and ethics