Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 4, pp 357–366 | Cite as

The proton-translocating NADH: Ubiquinone oxidoreductase: A discussion of selected topics

  • Moshe Finel


The proton-translocating NADH: ubiquinone oxidoreductase (complex I) is a large, multi-subunit and multi-redox centre enzyme which is found in the mitochondrial inner membrane and plasma membrane of some bacteria. In this minireview an attempt has been made to critically discuss selected topics in the structure and function of this enzyme. A special emphasis is given to the iron-sulphur cluster and to the proteins that may bind them. Previous suggestions for the mechanism of proton-translocation by complex I are discussed. Subcomplexes that contain several but not all of the subunits of the intact mitochrondrial enzyme are described and analysed in order to identify the functional core of the enzyme. The data on the trans-membrane organisation of several subunits is examined. It is hoped that most of the suggestions as well as the questions raised here could be experimentally tested in the near future.

Key words

NADH dehydrogenase iron-sulphur clusters proton pumping subomplexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albracht, S. P. J., Dooijewaard, G., Leeuwerik, F. J., and Van Swol, B. (1977).Biochim. Biophys. Acta 459, 300–317.Google Scholar
  2. Albracht, S. P. J., Van Verseweld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.Google Scholar
  3. Beinert, H. and Albracht, S. P. J. (1982)Biochim. Biophys. Acta 683, 245–277.Google Scholar
  4. Brown, G. C., and Brand, M. D. (1988).Biochem. J. 252, 473–479.Google Scholar
  5. Chen, S., and Guillory, R. T. (1981).J. Biol. Chem. 256, 8318–8323.Google Scholar
  6. Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., and Daldal, F. (1992).Biochemistry 31, 3342–3351.Google Scholar
  7. De Vries, S., and Marres, C. A. M. (1987).Biochim. Biophys. Acta 895, 205–239.Google Scholar
  8. Dupuis, A., Skehel, M. J. and Walker, J. E. (1991).Biochemistry 30, 2954–2960.Google Scholar
  9. Fearnley, I. M. and Walker, J. E. (1992).Biochim. Biophys. Acta 1140, 105–134.Google Scholar
  10. Fearnley, I. M., Runswick, M. J., and Walker, J. E. (1989).EMBO J. 8, 665–672.Google Scholar
  11. Finel, M., and Wikström, M. (1986).Biochim. Biophys. Acta. 851, 99–108.Google Scholar
  12. Finel, M., Skehel, J. M., Albracht, S. P. J., Fearnley, I. M., and Walker, J. E. (1992).Biochemistry 31, 11425–11434.Google Scholar
  13. Freidrich, T., Hofhaus, G., Ise, W., Nehls, U., Schmitz, B., and Weiss, H. (1989).Eur. J. Biochem. 180, 173–180.Google Scholar
  14. Galante, Y. M., and Hatefi, Y. (1979).Arch. Biochem. Biophys. 192, 559–568.Google Scholar
  15. Han, A-L., Yagi, T. and Hatefi, Y. (1989).Arch. Biochem. Biophys. 275, 166–173.Google Scholar
  16. Hatefi, Y., and Hanstein, W. G. (1973).Biochemistry 12, 3515–3522.Google Scholar
  17. Hofhaus, G., Weiss, H., and Leonard, K. (1991).J. Mol. Biol. 221, 1027–1043.Google Scholar
  18. Ingledew, W. J., and Ohnishi, T. (1980).Biochem. J. 186, 111–117.Google Scholar
  19. Jaworowski, A., Mayo, G., Shaw, D. C., Capbell, H. D., and Young, I. G. (1981).Biochemistry 20, 3621–3628.Google Scholar
  20. Kotlyar, A. B., Sled, V. D., Burbaev, D. Sh., Moroz, I. A., and Vinogradov, A. D. (1990).FEBS Lett. 264, 17–20.Google Scholar
  21. Kowal, A. T., Morningstar, J. E., Johnson, M. K., Ramsey, R. R., and Singer, T. P. (1986).J. Biol. Chem. 261, 9239–9245.Google Scholar
  22. Krishnamoorthy, G., and Hinkle, P. C. (1988).J. Biol. Chem. 263, 17566–17575.Google Scholar
  23. Leonard, K., Haikar, H., and Weiss, H. (1987).J. Mol. Biol. 194, 277–286.Google Scholar
  24. Masui, R., Wakabayashi, S., Matsubara, H., and Hatefi, Y. (1991).J. Biochem. 109, 534–543.Google Scholar
  25. Meinhardt, S. W., Kula, T., Yagi, T., Lillich, T., and Ohnishi, T. (1987).J. Biol. Chem. 262, 9147–9153.Google Scholar
  26. Mitchell, P. (1961).Nature (London) 191, 144–148.Google Scholar
  27. Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T., and Weiss, H. (1992).J. Mol. Biol. 227, 1032–1042.Google Scholar
  28. Ohnishi, T. (1979). InMembrane Proteins in Energy Transduction (Capaldi, R. A., ed.), Marcel Dekker, New York, pp 1–87.Google Scholar
  29. Ohnishi, T. (1987).Curr. Top. Bioenerg. 15, 37–65.Google Scholar
  30. Ohnishi, T., and Salerno, J. C. (1982). InIron-Sulfur Proteins Vol. 4 (Spiro, T. G., ed.), Wiley, New York, pp. 285–327.Google Scholar
  31. Ohnishi, T., Ragan, C. I., and Hatefi, Y. (1985).J. Biol. Chem. 260, 2782–2788.Google Scholar
  32. Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974).J. Biol. Chem. 249, 1922–1927.Google Scholar
  33. Paech, C., Reynolds, J. G., Singer, T. P., and Holm, R. H. (1981).J. Biol. Chem. 256, 3167–3170.Google Scholar
  34. Paech, C., Friend, A., and Singer, T. P. (1982).Biochem. J. 203, 244–481.Google Scholar
  35. Pagani, S., and Galante, Y. M. (1983).Biochim. Biophys. Acta 742, 278–284.Google Scholar
  36. Patel, S. D., Cleeter, M. W. J., and Ragan, C. I. (1988).Biochem. J. 256, 529–535.Google Scholar
  37. Pilkington, S. J., and Walker, J. E. (1989).Biochemistry 28, 3257–3264.Google Scholar
  38. Pilkington, S. J., Skehel, J. M., Gennis, R. B., and Walker, J. E. (1991a).Biochemistry 30, 2166–2175.Google Scholar
  39. Pilkington, S. J., Skehel, J. M. and Walker, J. E. (1991b).Biochemistry 30, 1901–1098.Google Scholar
  40. Ragan, C. I. (1987).Curr. Top. Bioenerg. 15, 1–36.Google Scholar
  41. Ragan, C. I., and Hinkle, P. C. (1975).J. Biol. Chem. 250, 8472–8476.Google Scholar
  42. Ragan, C. I., Ohnishi, T., and Hatefi, Y. (1986). InFrontiers of Ironsulfur Protein Research (Matsubara, H.,et al., eds.), Japan Scientific Societies Press, Tokyo, pp 220–231.Google Scholar
  43. Runswick, M. J., Gennis, R. B., Fearnley, I. M., and Walker, J. E. (1989).Biochemistry 28, 9452–9459.Google Scholar
  44. Salerno, J. C., Ohnishi, T., Lim, J., Widger, W. R., and King, T. E. (1977).Biochem. Biophys. Res. Commun. 75, 618–624.Google Scholar
  45. Schmidt, M., Friedrich, T., Wallrath, J., Ohnishi, T., and Weiss, H. (1992).FEBS Lett. 313, 8–11.Google Scholar
  46. Schneider, K., Schlegel, H. G., Cammack, R., and Hall, D. O. (1979).Biochim. Biophys. Acta 578, 445–461.Google Scholar
  47. Schneider, K., Cammack, R., and Schlegel, H. G. (1984).Eur. J. Biochem. 142, 75–84.Google Scholar
  48. Tran-Betcke, A., Warnecke, U., Böcker, C., Zabarosch, C., and Friedrich, B. (1990).J. Bacteriol. 172, 2920–2929.Google Scholar
  49. Van Belzen, R. (1991). Ph.D. Thesis, University of Amsterdam.Google Scholar
  50. Van Belzen, R., and Albracht, S. P. J. (1989).Biochem. Biophys. Acta 974, 311–320.Google Scholar
  51. Van Belzen, R., Van Gaalen, M. C. M., Cuypers, P. A., and Albracht, S. P. J. (1990).Biochim. Biophys. Acta 1017, 152–159.Google Scholar
  52. Van Belzen, R., De Jong, A. M. Ph., and Albracht, S. P. J. (1992).Eur. J. Biochem. 209, 1019–1022.Google Scholar
  53. Walker, J. E. (1992).Q. Rev. Biophys.,25, 253–324.Google Scholar
  54. Wang, D-C., Meinhardt, S. W., Sackmann, U., Weiss, H., and Ohnishi, T. (1991).Eur. J. Biochem. 197, 257–264.Google Scholar
  55. Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197, 563–576.Google Scholar
  56. Wikström, M. (1984).FEBS Lett. 169, 300–304.Google Scholar
  57. Wikström, M., Krab, K., and Saraste, M. (1981).Annu. Rev. Biochem. 50, 623–655.Google Scholar
  58. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991).Biochemistry 30, 8678–8684.Google Scholar
  59. Yagi, T. (1991).J. Bioenerg. Biomembr. 23, 211–225.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Moshe Finel
    • 1
  1. 1.Department of Medical ChemistryUniversity of HelsinkiFinland

Personalised recommendations