Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1299))

Abstract

Peroxisome is an organelle conserved in almost all eukaryotic cells with a variety of functions in cellular metabolism, including fatty acid β-oxidation, synthesis of ether glycerolipid plasmalogens, and redox homeostasis. Such metabolic functions and the exclusive importance of peroxisomes have been highlighted in fatal human genetic disease called peroxisomal biogenesis disorders (PBDs). Recent advances in this field have identified over 30 PEX genes encoding peroxins as essential factors for peroxisome biogenesis in various species from yeast to humans. Functional delineation of the peroxins has revealed that peroxisome biogenesis comprises the processes, involving peroxisomal membrane assembly, matrix protein import, division, and proliferation. Catalase, the most abundant peroxisomal enzyme, catalyzes decomposition of hydrogen peroxide. Peroxisome plays pivotal roles in the cellular redox homeostasis and the response to oxidative stresses, depending on intracellular localization of catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGPS:

alkylglyceronephosphate synthase

AGT :

alanine glyoxylate aminotransferase

CHO :

Chinese hamster ovary

DHA:

docosahexaenoic acid

DHAPAT :

dihydroxyacetone phosphate acyltransferase

DLP1 :

dynamin-like protein 1

DYNAMO1 :

dynamin-based ring motive-force organizer 1

ER :

endoplasmic reticulum

Far1 :

fatty acyl-CoA reductase 1

H2O2 :

hydrogen peroxide

IRD :

infantile Refsum disease

MD :

mitochondrial division

Mff :

mitochondrial fission factor

NALD :

neonatal adrenoleukodystrophy

NDP kinase :

nucleoside diphosphate kinase

PBDs :

peroxisome biogenesis disorders

PlsEtn :

ethanolamine plasmalogen

PMP :

peroxisomal membrane protein

POD :

peroxisome-dividing

PTS :

peroxisomal targeting signal

RCDP :

rhizomelic chondrodysplasia punctata

ROS :

reactive oxygen species

TPR :

tetratricopeptide repeat

VDAC2 :

voltage-dependent anion channel 2

ZSDs :

Zellweger spectrum disorders

References

  1. de Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    Article  PubMed  Google Scholar 

  2. Waterham HR, Ferdinandusse S, Wanders RJA (2016) Human disorders of peroxisome metabolism and biogenesis. Biochem Biophys Acta 1863:922–933

    Article  CAS  PubMed  Google Scholar 

  3. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK et al (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    Article  CAS  PubMed  Google Scholar 

  4. Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4:165–211

    Article  CAS  PubMed  Google Scholar 

  5. Berger J, Dorninger F, Forss-Petter S, Kunze M (2016) Peroxisomes in brain development and function. Biochem Biophys Acta. 1863:934–955

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto N, Tamura S, Fujiki Y (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5:454–460

    Article  CAS  PubMed  Google Scholar 

  7. Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S (2014) Peroxisome biogenesis in mammalian cells. Front Physiol 5:307

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wanders RJA, Brites P (2010) Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem. Clin Lipidol 5:379–386

    Article  CAS  Google Scholar 

  9. Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jansen GA, Wanders RJA (2006) Alpha-oxidation. Biochim Biophys Acta 1763:1403–1412

    Article  CAS  PubMed  Google Scholar 

  11. Danpure CJ, Jennings PR (1986) Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett 201:20–24

    Article  CAS  PubMed  Google Scholar 

  12. Ichiyama A (2011) Studies on a unique organelle localization of a liver enzyme, serine:pyruvate (or alanine:glyoxylate) aminotransferase. Proc Jpn Acad Ser B Phys Biol Sci 87:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danpure CJ, Jennings PR, Watts RW (1987) Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. Lancet 329:289–291

    Article  Google Scholar 

  14. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    Article  CAS  PubMed  Google Scholar 

  15. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  CAS  PubMed  Google Scholar 

  16. Cífková E, Holčapek M, Lísa M (2013) Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry. Lipids 48:915–928

    Article  PubMed  CAS  Google Scholar 

  17. Cheng JB, Russell DW (2004) Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme a reductases with different substrate specificities and tissue distributions. J Biol Chem 279:37789–37797

    Article  CAS  PubMed  Google Scholar 

  18. Honsho M, Asaoku S, Fujiki Y (2010) Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J Biol Chem 285:8537–8542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Honsho M, Asaoku S, Fukumoto K, Fujiki Y (2013) Topogenesis and homeostasis of fatty acyl-CoA reductase 1. J Biol Chem 288:34588–34598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Honsho M, Fujiki Y (2017) Plasmalogen homeostasis: regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 591:2720–2729

    Article  CAS  PubMed  Google Scholar 

  21. Wanders RJA, Dekker C, Hovarth VA, Schutgens RB, Tager JM, van Laer P et al (1994) Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 17:315–318

    Article  CAS  PubMed  Google Scholar 

  22. Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B et al (2014) A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency. Am J Hum Genet 95:602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferdinandusse S, Ebberink MS, Vaz FM, Waterham HR, Wanders RJA (2016) The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders. J Inherit Metab Dis 39:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honsho M, Abe Y, Fujiki Y (2017) Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Sci Rep 7:43936

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mandel H, Sharf R, Berant M, Wanders RJA, Vreken P, Aviram M (1998) Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: insights from investigations with plasmalogen-deficient cells. Biochem Biophys Res Commun 250:369–373

    Article  CAS  PubMed  Google Scholar 

  26. Munn NJ, Arnio E, Liu D, Zoeller RA, Liscum L (2003) Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J Lipid Res 44:182–192

    Article  CAS  PubMed  Google Scholar 

  27. Honsho M, Abe Y, Fujiki Y (2015) Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis. J Biol Chem 290:28822–28833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gill S, Stevenson J, Kristiana I, Brown AJ (2011) Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab 13:260–273

    Article  CAS  PubMed  Google Scholar 

  29. Ajouz H, Mukherji D, Shamseddine A (2014) Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 12:164

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wanders RJA, Ferdinandusse S, Brites P, Kemp S (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:272–280

    Article  CAS  PubMed  Google Scholar 

  31. Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537

    Article  CAS  PubMed  Google Scholar 

  32. Yifrach E, Fischer S, Oeljeklaus S, Schuldiner M, Zalckvar E, Warscheid B (2018) Defining the mammalian peroxisomal proteome. Subcell Biochem 89:47–66

    Article  CAS  PubMed  Google Scholar 

  33. Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou LS, Jin L et al (2018) SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep 19:e45124

    PubMed  PubMed Central  Google Scholar 

  34. Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418

    Article  CAS  PubMed  Google Scholar 

  35. Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K (2006) Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. Biochim Biophys Acta-Mol Cell Res 1763:1374–1381

    Article  CAS  Google Scholar 

  36. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM et al (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    Article  CAS  PubMed  Google Scholar 

  37. Ghaedi K, Honsho M, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (2000) PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am J Hum Genet 67:976–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuzono Y, Kinoshita N, Tamura S, Shimozawa N, Hamasaki M, Ghaedi K et al (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci U S A 96:2116–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 63:1622–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. South ST, Sacksteder KA, Li X, Liu Y, Gould SJ (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baerends RJS, Rasmussen SW, Hilbrands RE, van der Heide M, Faber KN, Reuvekamp PTW et al (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894

    Article  CAS  PubMed  Google Scholar 

  44. Götte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau W-H et al (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hettema EH, Girzalsky W, van den Berg M, Erdmann R, Distel B (2000) Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otzen M, Perband U, Wang D, Baerends RJ, Kunau WH, Veenhuis M et al (2004) Hansenula polymorpha Pex19p is essential for the formation of functional peroxisomal membranes. J Biol Chem 279:19181–19190

    Article  CAS  PubMed  Google Scholar 

  47. Jones JM, Morrell JC, Gould SJ (2004) PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 164:57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsuzono Y, Matsuzaki T, Fujiki Y (2006) Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J Cell Sci 119:3539–3550

    Article  CAS  PubMed  Google Scholar 

  49. Fang Y, Morrell JC, Jones JM, Gould SJ (2004) PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol 164:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuzaki T, Fujiki Y (2008) The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183:1275–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Yagita Y, Fujiki Y (2016) Assembly of peroxisomal membrane proteins via the direct Pex19p-Pex3p pathway. Traffic 17:433–455

    Article  CAS  PubMed  Google Scholar 

  52. Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137:1265–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farré JC, Carolino K, Stasyk OV, Stasyk OG, Hodzic Z, Agrawal G et al (2017) A new yeast peroxin, Pex36, a functional homolog of mammalian PEX16, functions in the ER-to-peroxisome traffic of peroxisomal membrane proteins. J Mol Biol 429:3743–3762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yagita Y, Hiromasa T, Fujiki Y (2013) Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J Cell Biol 200:651–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diestelkotter P, Just WW (1993) In vitro insertion of the 22-kD peroxisomal membrane protein into isolated rat liver peroxisomes. J Cell Biol 123:1717–1725

    Article  CAS  PubMed  Google Scholar 

  56. Imanaka T, Shiina Y, Takano T, Hashimoto T, Osumi T (1996) Insertion of the 70-kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro. J Biol Chem 271:3706–3713

    Article  CAS  PubMed  Google Scholar 

  57. Pinto MP, Grou CP, Alencastre IS, Oliveira ME, Sa-Miranda C, Fransen M et al (2006) The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step. J Biol Chem 281:34492–34502

    Article  CAS  PubMed  Google Scholar 

  58. Chen Y, Pieuchot L, Loh RA, Yang J, Kari TM, Wong JY et al (2014) Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat Commun 5:5790

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt F, Dietrich D, Eylenstein R, Groemping Y, Stehle T, Dodt G (2012) The role of conserved PEX3 regions in PEX19-binding and peroxisome biogenesis. Traffic 13:1244–1260

    Article  CAS  PubMed  Google Scholar 

  60. Gould SJ, Keller G-A, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105:2923–2931

    Article  CAS  PubMed  Google Scholar 

  61. Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T et al (1992) Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J Biol Chem 267:14405–14411

    Article  CAS  PubMed  Google Scholar 

  62. Osumi T, Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y et al (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun 181:947–954

    Article  CAS  PubMed  Google Scholar 

  63. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10:3255–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujiki Y (2016) Peroxisome biogenesis and human peroxisome-deficiency disorders. Proc Jpn Acad Ser B 92:463–477

    Article  CAS  Google Scholar 

  65. Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P et al (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9:115–125

    Article  CAS  PubMed  Google Scholar 

  66. Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M et al (1998) Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 18:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Braverman N, Steel G, Obie C, Moser A, Moser H, Gould SJ et al (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 15:369–376

    Article  CAS  PubMed  Google Scholar 

  68. Motley AM, Hettema EH, Hogenhout EM, Brites P, ten Asbroek ALMA, Wijburg FA et al (1997) Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 15:377–380

    Article  CAS  PubMed  Google Scholar 

  69. Purdue PE, Zhang JW, Skoneczny M, Lazarow PB (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15:381–384

    Article  CAS  PubMed  Google Scholar 

  70. Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 22:1639–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25:10822–10832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7:817–822

    Article  CAS  PubMed  Google Scholar 

  73. Tamura S, Matsumoto N, Takeba R, Fujiki Y (2014) AAA peroxins and their recruiter Pex26p modulate the interactions of peroxins involved in peroxisomal protein import. J Biol Chem 289:24336–24346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A et al (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714

    Article  CAS  PubMed  Google Scholar 

  75. Matsumura T, Otera H, Fujiki Y (2000) Disruption of interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes the PTS2 protein import in mammals: study with a novel PEX5-impaired Chinese hamster ovary cell mutant. J Biol Chem 275:21715–21721

    Article  CAS  PubMed  Google Scholar 

  76. Mukai S, Fujiki Y (2006) Molecular mechanisms of import of peroxisome-targeting signal type 2 (PTS2) proteins by PTS2 receptor Pex7p and PTS1 receptor Pex5pL. J Biol Chem 281:37311–37320

    Article  CAS  PubMed  Google Scholar 

  77. Kunze M (2020) The type-2 peroxisomal targeting signal. Biochim Biophys Acta-Mol Cell Res 1867:118609

    Google Scholar 

  78. Liu X, Ma C, Subramani S (2012) Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 24:1–6

    Article  CAS  Google Scholar 

  79. Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C (2016) Regulation of peroxisomal matrix protein import by ubiquitination. Biochim Biophys Acta-Mol Cell Res. 1863:838–849

    Article  CAS  Google Scholar 

  80. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C et al (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272

    Article  CAS  PubMed  Google Scholar 

  81. Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sá-Miranda C, Fransen M et al (2009) Properties of the ubiquitin-Pex5p thiol ester conjugate. J Biol Chem 284:10504–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12:1067–1083

    Article  CAS  PubMed  Google Scholar 

  83. Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y (2012) AWP1/ZFAND6 functions in Pex5 export by interacting with Cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13:168–183

    Article  CAS  PubMed  Google Scholar 

  84. Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543

    Article  CAS  PubMed  Google Scholar 

  85. Platta HW, Magraoui FE, Bäumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29:5505–5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M et al (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15:94–103

    Article  CAS  PubMed  Google Scholar 

  87. Walton PA, Brees C, Lismont C, Apanasets O, Fransen M (2017) The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress. Biochim Biophys Acta 1864:1833–1843

    Article  CAS  Google Scholar 

  88. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF et al (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287:12815–12827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE et al (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286:28223–28234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Okumoto K, Noda H, Fujiki Y (2014) Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem 289:14089–14108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang W, Xia ZJ, Farré JC, Subramani S (2017) TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol 216:2843–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT et al (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17:1259–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sargent G, van Zutphen T, Shatseva T, Zhang L, Di Giovanni V, Bandsma R et al (2016) PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J Cell Biol 214:677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  PubMed  Google Scholar 

  95. Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M (2016) Proliferation and fission of peroxisomes - an update. Biochim Biophys Acta-Mol Cell Res. 1863:971–983

    Article  CAS  Google Scholar 

  96. Honsho M, Yamashita S, Fujiki Y (2016) Peroxisome homeostasis: mechanisms of division and selective degradation of peroxisomes in mammals. Biochim Biophys Acta-Mol Cell Res. 1863:984–991

    Article  CAS  Google Scholar 

  97. Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    Article  CAS  PubMed  Google Scholar 

  98. Tanaka A, Kobayashi S, Fujiki Y (2006) Peroxisome division is impaired in a CHO cell mutant with an inactivating point-mutation in dynamin-like protein 1 gene. Exp Cell Res 312:1671–1684

    Article  CAS  PubMed  Google Scholar 

  99. Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y (2012) Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 125:589–602

    Article  CAS  PubMed  Google Scholar 

  101. Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686

    Article  CAS  PubMed  Google Scholar 

  103. Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y et al (2013) Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open. 2:998–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA et al (1998) Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    Article  CAS  PubMed  Google Scholar 

  105. Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002) PEX11β deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ebberink MS, Koster J, Visser G, van Spronsen F, Stolte-Dijkstra I, Smit GPA et al (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J Med Genet 49:307–313

    Article  CAS  PubMed  Google Scholar 

  107. Thoms S, Gärtner J (2012) First PEX11β patient extends spectrum of peroxisomal biogenesis disorder phenotypes. J Med Genet 49:314–316

    Article  CAS  PubMed  Google Scholar 

  108. Opaliński Ł, Kiel JA, Williams C, Veenhuis M, van der Klei IJ (2011) Membrane curvature during peroxisome fission requires Pex11. EMBO J 30:5–16

    Article  PubMed  CAS  Google Scholar 

  109. Yoshida Y, Niwa H, Honsho M, Itoyama A, Fujiki Y (2015) Pex11p mediates peroxisomal proliferation by promoting deformation of the lipid membrane. Biol Open 4:710–721

    Article  PubMed  PubMed Central  Google Scholar 

  110. Su J, Thomas AS, Grabietz T, Landgraf C, Volkmer R, Marrink S et al (2018) The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. Biochim Biophys Acta-Biomembr 1860:1292–1300

    Article  CAS  PubMed  Google Scholar 

  111. Islinger M, Voelkl A, Fahimi HD, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 150:443–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  CAS  PubMed  Google Scholar 

  113. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  114. Froehlich C, Grabiger S, Schwefel D, Faelber K, Rosenbaum E, Mears J et al (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32:1280–1292

    Article  CAS  Google Scholar 

  115. Bui HT, Shaw JM (2013) Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol 23:R891–R899

    Google Scholar 

  116. Williams C, Opalinski L, Landgraf C, Costello J, Schrader M, Krikken AM et al (2015) The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission. Proc Natl Acad Sci U S A 112:6377–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Taylor RL, Handley MT, Waller S, Campbell C, Urquhart J, Meynert AM et al (2017) Novel PEX11B mutations extend the peroxisome biogenesis disorder 14B phenotypic spectrum and underscore congenital cataract as an early feature. Invest Ophthalmol Vis Sci 58:594–603

    Article  CAS  PubMed  Google Scholar 

  118. Tian Y, Zhang L, Li Y, Gao J, Yu H, Guo Y et al (2020) Variant analysis of PEX11B gene from a family with peroxisome biogenesis disorder 14B by whole exome sequencing. Mol Genet Genomic Med 8:e1042

    Article  Google Scholar 

  119. Asare A, Levorse J, Fuchs E (2017) Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 355:eaah4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906

    Article  CAS  PubMed  Google Scholar 

  121. Imoto Y, Abe Y, Okumoto K, Honsho M, Kuroiwa H, Kuroiwa T et al (2017) Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. J Cell Sci 130:853–867

    Article  CAS  PubMed  Google Scholar 

  122. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26

    Article  CAS  PubMed  Google Scholar 

  123. Imoto Y, Abe Y, Honsho M, Okumoto K, Ohnuma M, Kuroiwa H et al (2018) Onsite GTP fuelling via DYNAMO1 drives division of mitochondria and peroxisomes. Nat Commun 9:4634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fujiki Y, Abe Y, Imoto Y, Tanaka AJ, Okumoto K, Honsho M et al (2020) Recent insights into peroxisome biogenesis and associated diseases. J Cell Sci 133:jcs236943

    Google Scholar 

  125. Imoto Y, Abe Y, Okumoto K, Ohnuma M, Kuroiwa H, Kuroiwa T et al (2019) Dynamics of nucleoside diphosphate kinase protein DYNAMO2 correlates with global GTP level during cell cycle of Cyanidioschyzon merolae. Proc Jpn Acad Ser B. 95:75–85

    Article  CAS  Google Scholar 

  126. Chen C-W, Wang H-L, Huang C-W, Huang C-Y, Lim WK, Tu I-C et al (2019) Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proc Natl Acad Sci U S A 116:566–574

    Article  CAS  PubMed  Google Scholar 

  127. Purdue PE, Lazarow PB (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 134:849–862

    Article  CAS  PubMed  Google Scholar 

  128. Otera H, Fujiki Y (2012) Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 13:1364–1377

    Article  CAS  PubMed  Google Scholar 

  129. Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ et al (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Murakami K, Ichinohe Y, Koike M, Sasaoka N, Iemura S, Natsume T et al (2013) VCP is an integral component of a novel feedback mechanism that controls intracellular localization of catalase and H2O2 levels. PLoS One 8:e56012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S et al (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30:3758–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abe Y, Honsho M, Kawaguchi R, Matsuzaki T, Ichiki Y, Fujitani M et al (2020) A peroxisome deficiency–induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. J Biol Chem 295:5321–5334

    Google Scholar 

  133. Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koepke JI, Nakrieko KA, Wood CS, Boucher KK, Terlecky LJ, Walton PA et al (2007) Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic 8:1590–1600

    Article  CAS  PubMed  Google Scholar 

  135. Tateishi K, Okumoto K, Shimozawa N, Tsukamoto T, Osumi T, Suzuki Y et al (1997) Newly identified Chinese hamster ovary cell mutants defective in peroxisome biogenesis represent two novel complementation groups in mammals. Eur J Cell Biol 73:352–359

    CAS  PubMed  Google Scholar 

  136. Hosoi K, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH et al (2017) The VDAC2–BAK axis regulates peroxisomal membrane permeability. J Cell Biol 216:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fujiki Y, Miyata N, Mukai S, Okumoto K, Cheng EH (2017) BAK regulates catalase release from peroxisomes. Mol Cell Oncol 4:e1306610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Dubreuil MM, Morgens DW, Okumoto K, Honsho M, Contrepois K, Lee-McMullen B et al (2020) Systematic identification of regulators of oxidative stress reveals non-canonical roles for peroxisomal import and the pentose phosphate pathway. Cell Rep 30:1417–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschner D et al (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hua R, Cheng D, Coyaud É, Freeman S, Di Pietro E, Wang Y et al (2017) VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shai N, Yifrach E, van Roermund CWT, Cohen N, Bibi C, IJlst L et al (2018) Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat Commun 9:e1761

    Google Scholar 

  142. Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K et al (2018) Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 1:e201800062

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the colleagues in this field for not citing all their work due to space limitations.

This work was supported in part by Grants-in-Aid for Scientific Research: JP24770130 (to K.O.), JP24570134 (to S.T.), JP26440102 and JP17K07337 (to M.H.), and JP24247038, JP25112518, JP25116717, JP 26116007, JP15K14511, JP15K21743, and JP117H03675 (to Y.F.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a CREST grant (to Y.F.) from the Science and Technology Agency of Japan, and grants (to Y.F.) from the Takeda Science Foundation, the Naito Foundation, and Japan Foundation for Applied Enzymology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Fujiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okumoto, K., Tamura, S., Honsho, M., Fujiki, Y. (2020). Peroxisome: Metabolic Functions and Biogenesis. In: Lizard, G. (eds) Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases. Advances in Experimental Medicine and Biology, vol 1299. Springer, Cham. https://doi.org/10.1007/978-3-030-60204-8_1

Download citation

Publish with us

Policies and ethics