Journal of Materials Science

, Volume 9, Issue 5, pp 821–828 | Cite as

Lattice parameter study of silicon uniformly doped with boron and phosphorus

  • G. Celotti
  • D. Nobili
  • P. Ostoja
Papers

Abstract

Powder and single-crystal X-ray techniques have been employed to obtain precise lattice parameters of silicon uniformly doped with boron or phosphorus. Good agreement is found between the two methods. Previous accurate determination of the CuKα1, effective wavelength has yielded λ=1.540621±0.000006 Å. Particular care has been devoted to the chemical and electrical characterization of the alloys, whose maximum dopant concentrations were 8×1019 atoms cm−3 for P and 4.4×1020 atoms cm−3 for B.

A linear dependence of lattice parameter on concentration has been found for P in the whole examined range, while for B a deviation from the linear trend starts at about 2.25×1020 atoms cm−3. Tetrahedral radii are found to be 1.176 Å for pure Si, 1.07 Å and 0.91 Å respectively for dissolved substitutional P and B. Values of the linear lattice contraction coefficient, volume size factor, Vegard's law factor and elastic strain energy in both alloys are reported and discussed. The deviation from linear trend in borondoped alloys is analysed and it is shown that the phenomenon is insensitive to heattreatments and does not depend on the degree of ionization of boron atoms.

Keywords

Boron Boron Atom Elastic Strain Energy Electrical Characterization Volume Size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Tannenbaum,Solid-State Electron. 2 (1961) 123.Google Scholar
  2. 2.
    F. H. Horn,Phys. Rev. 97 (1955) 1521.Google Scholar
  3. 3.
    G. L. Pearson andJ. Bardeen,ibid 75 (1949) 865.Google Scholar
  4. 4.
    B. G. Cohen,Solid-State Electron. 10 (1967) 33.Google Scholar
  5. 5.
    K. G. McQuhae andA. S. Brown,ibid 15 (1972) 259.Google Scholar
  6. 6.
    G. B. Dubrovskii, Dissertation for Candidate's Degree, Leningrad (1963), quoted in:V. I. Fistul, Heavily doped semiconductors” (Plenum Press, New York, 1969) pp. 33 ff.Google Scholar
  7. 7.
    S. Kishino,Adv. X-ray Anal. 16 (1973) 367.Google Scholar
  8. 8.
    F. A. Trumbore,Bell Syst. Technol. J. 39 (1960) 205.Google Scholar
  9. 9.
    N. K. Abrikosov, V. M. Glazov andL. Chengyüan,Z. Neorg. Khim. 7 (1962) 831.Google Scholar
  10. 10.
    F. N. Schwettmann andD. L. Kendall,Appl. Phys. Letts. 19 (1971) 218.Google Scholar
  11. 11.
    P. Lanza andP. L. Buldini,Anal. Chim. Acta, in press.Google Scholar
  12. 12.
    J. C. Irvin,Bell Syst. Technol. J. 41 (1962) 387.Google Scholar
  13. 13.
    L. J. Van Der Pauw,Philips Res. Repts. 13 (1958) 1.Google Scholar
  14. 14.
    P. Debye andP. Scherrer,Physik. Z. 17 (1916) 277;18 (1917) 291.Google Scholar
  15. 15.
    W. L. Bond,Acta Cryst. 13 (1960) 814.Google Scholar
  16. 16.
    H. P. Klug andL. E. Alexander, “X-ray diffraction procedures” (Wiley, New York, 1959) pp. 319ff.Google Scholar
  17. 17.
    P. Bellon, V. Scatturin andR. Zannetti,Ric. Sci. 26 (1956) 1732.Google Scholar
  18. 18.
    J. B. Nelson andD. P. Riley,Proc. Phys. Soc. (London) 57 (1945) 160.Google Scholar
  19. 19.
    A. Taylor andH. Sinclair,ibid 57 (1945) 126.Google Scholar
  20. 20.
    M. U. Cohen,Rev. Sci. Instrum. 6 (1935) 68;7 (1936) 155.Google Scholar
  21. 21.
    A. Guinier, “Théorie et technique de la radiocristallographie” (Dunod, Paris, 1964) p. 2.Google Scholar
  22. 22.
    T. W. Baker, J. D. George, B. A. Bellamy andR. Causer,Adv. X-ray Anal. 11 (1968) 359.Google Scholar
  23. 23.
    Idem, AERE Research Report, Harwell (1969) R-5152.Google Scholar
  24. 24.
    B. A. Bellamy,ibid (1973) R-7311.Google Scholar
  25. 25.
    A. F. W. Willoughby, C. M. H. Driscoll andB. A. Bellamy,J. Mater. Sci. 6 (1971) 1389.Google Scholar
  26. 26.
    C. F. Pihl, R. L. Bieber andG. H. Schwuttke,Phys. Stat. Sol. (a) 17 (1973) 359.Google Scholar
  27. 27.
    K. Lonsdale (ed.), “International Tables for X-ray Crystallography” (Kynoch Press, Birmingham, 1968) Vol. III, p. 60.Google Scholar
  28. 28.
    J. A. Bearden,Rev. Mod. Phys. 39 (1967) 78.Google Scholar
  29. 29.
    R. L. Barns,Adv. X-ray Anal. 15 (1972) 330.Google Scholar
  30. 30.
    M. Hart, unpublished results.Google Scholar
  31. 31.
    Idem, J. Phys. D: Appl. Phys. 1 (1968) 1405.Google Scholar
  32. 32.
    I. Curtis, I. Morgan, M. Hart andA. D. Milne, in: “Precision measurement and fundamental constants” (edited by D. N. Langenberg and B. N. Taylor) (NBS, Washington, 1971) p. 285.Google Scholar
  33. 33.
    W. Parrish,Acta Cryst. 13 (1960) 838.Google Scholar
  34. 34.
    B. J. Isherwood andC. A. Wallace,Nature 212 (1966) 173.Google Scholar
  35. 35.
    E. D. Pierron andJ. B. McNeely,Adv. X-ray Anal. 12 (1969) 343.Google Scholar
  36. 36.
    A. Segmüller, IBM Res. Rept., Yorktown Heights (1969) RC-2640.Google Scholar
  37. 37.
    L. Pauling, “The nature of the chemical bond” (Cornell University Press, Ithaca, 1960) p. 246.Google Scholar
  38. 38.
    J. C. Slater,J. Chem. Phys. 41 (1964) 3199.Google Scholar
  39. 39.
    H. W. King,J. Mater. Sci. 1 (1966) 79.Google Scholar
  40. 40.
    Idem, ibid 6 (1971) 1157.Google Scholar
  41. 41.
    A. Brown andS. Rundqvist,Acta Cryst. 19 (1965) 684.Google Scholar
  42. 42.
    J. D. Eshelby,Solid State Phys. 3 (1956) 79.Google Scholar
  43. 43.
    H. B. Huntington,ibid 7 (1958) 213.Google Scholar
  44. 44.
    R. P. Elliott, “Constitution of binary alloys”, First supplement (McGraw-Hill, New York, 1965) pp. 134 and 716.Google Scholar
  45. 45.
    R. A. Evans, US Dept. of Commerce, Washington (1964) ASD-TDR-63-316, Vol. V.Google Scholar
  46. 46.
    P. W. Chapman, O. N. Tufte, J. D. Zook andD. Lang,J. Appl. Phys. 34 (1963) 3291.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1974

Authors and Affiliations

  • G. Celotti
    • 1
  • D. Nobili
    • 1
  • P. Ostoja
    • 1
  1. 1.Laboratorio di Chimica e Tecnologia dei Materiali e dei Componenti per l'ElettronicaC.N.R.BolognaItaly

Personalised recommendations