Skip to main content
Log in

Kinetic analysis of the oxidation of Nb–Si eutectic alloy doped with boron

  • General Purpose Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The mechanism and the kinetics of the oxidation in an air flow of powdery Nb–Si eutectic alloy containing (wt %) 93.0 Nb, 6.7 Si, and 0.27 B are studied by X-ray diffraction (XRD), thermogravimetric (TG), and differential thermal analysis (DTA). The oxidation of alloy proceeds through three stages. At the first stage (600–923 K), the oxidation of a Nb ss solid solution (with the formation of Nb2O5, NbO0.76, NbO, and NbO2 oxides) and boron (to B2O3) released during the conversion of the Nb5Si3–x B x phase (T2 phase) into Nb5SiB y (D88) occurs. At the second stage (923–993 K), the accumulation of the product layer and the formation of borosilicate occur, which prevents the oxidation. At the third stage, Nb3Si and Nb5SiB y (D88) silicides and Nb3B2 niobium boride are oxidized. Under heating above 1023 K, the interaction of boron oxide with niobium oxide occurs with the formation of Nb3BO9. The possible oxidation mechanisms are considered. It is shown that are well described by the model of three successive stages, each one limited by the kinetic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bewlay, B.P., Jackson, M.R., Zhao, J.C., and Subramanian, P.R., A review of very-high-temperature Nb–silicide-based composites, Metall. and Mater. Trans., A, 2003, vol. 34, pp. 2043–2052.

    Article  Google Scholar 

  2. Grashchenkov, D.V., Shchetanov, B.V., and Efimochkin, I.Yu., Development of powder metallurgy of refractory materials, Vse Mater., 2011, no. 5. http://www.viam.ru/public.

    Google Scholar 

  3. Kocherzhinskii, Yu.A., Yupko, L.M., and Shishkin, E.A., Equilibrium diagram of the Nb–Si system, Metally (Moscow), 1980, no. 1, pp. 206–210.

    Google Scholar 

  4. Schlesinger, M.E., Okamoto, H., Gokahle, A.B., and Abbaschian, R., The Nb–Si (niobium-silicon) system, J. Phase Equilib., 1993, vol. 14, no. 4, pp. 502–509.

    Article  CAS  Google Scholar 

  5. Chumarev, V.M., Leont’ev, L.I., Udoeva, L.Yu., Sel’menskikh, N.I., Gulyaeva, R.I., Zhidovinova, S.V., and Larionov, A.V., Effect of boron and yttrium on the phase composition and the microstructure of natural Nb–Si composites, Russ. Metall., (Engl. Transl.), 2014, vol. 2014, no. 9, pp. 688–696.

    Article  Google Scholar 

  6. Svetlov, I.L., High-temperature Nb–Si composites. Part 1, Inorg. Mater.: Appl. Res., 2011, no. 2, pp. 307–315

    Article  Google Scholar 

  7. Svetlov, I.L., High-temperature Nb–Si composites. Part 2, Inorg. Mater.: Appl. Res., 2011, no. 2, p. 316.

    Article  Google Scholar 

  8. Zelenitsas, K. and Tsakiropoulos, P., Effect of Al,Cr,and Ta additions on the oxidation behavior of Nb–Ti–Si in situ composites at 800°C, Mater. Sci. Eng., A, 2006, vol. 416, pp. 269–280.

    Article  Google Scholar 

  9. Wang, J., Guo, X.P., and Guo, J.M., Effects of B on the microstructure and oxidation resistance of Nb–Ti–Sibased ultrahigh-temperature alloy, Chin. J. Aeronaut., 2009, vol. 22, pp. 544–550.

    Article  Google Scholar 

  10. Geng, J. and Tsakiropoulos, P., A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf, Sn, Intermetallics, 2007, vol. 15, pp. 382–395.

    Article  CAS  Google Scholar 

  11. Gulyaeva, R.I., Mansurova, A.N., Chumarev, V.M., Leont’ev, L.I., and Udoeva, L.Yu., Kineticheskii analiz okisleniya evtekticheskogo splava Nb–Si (Kinetic Analysis of the Oxidation of the Eutectic Nb–Si Alloy), Tr. Inst. Metall., Ural. Otd., Ross. Akad. Nauk, Chelyabinsk: Yuzh.-Ural. Knizh. Izd., 2015, pp. 83–91.

    Google Scholar 

  12. Liu, A.Q., Li, S.S., Sun, L., and Han, Y.F., Effect of B on the microstructures and high temperature oxidation resistance of a Nb–Si system in-situ composite, Mater. Sci. Forum, 2007, vols. 546–549, pp. 1489–1494.

    Article  Google Scholar 

  13. Perepezko, J.H., Phase Stability and Microstructure Design in High Temperature (Mo,Nb)–Si–B Alloys, Madison: Univ. of Wisconsin–Madison, 1999.

    Google Scholar 

  14. Liu, Y., Thom, A.J., Kramer, M.J., and Akinc, M., Processing and Oxidation Behavior of Nb–Si–B Intermetallics, Ames: Iowa State Univ, 2004. http://www.osti.gov/scitech/servlets/purl/832901-O4nY3P/webviewable/.

    Google Scholar 

  15. Sun, Z., Yang, Y., Guo, X., Zhang, C., and Chang, Y.A., Thermodynamic modeling of the Nb-rich corner in the Nb–Si–B system, Intermetallics, 2011, vol. 19, pp. 26–34.

    Article  CAS  Google Scholar 

  16. Katrych, S., Grytsiv, A., Bondar, A., Rogl, P., Velikanova, T., and Bohn, M., Structural materials: metal–silicon–Boron. The Nb-rich corner of the Nb–Si–B system, J. Solid State Chem., 2004, vol. 177, pp. 493–497.

    Article  CAS  Google Scholar 

  17. Joubert, J.-M., Colinet, C., Rodrigues, G., Suzuki, P.A., Nunes, C.A., Coelho, G.C., and Tedenac, J.-C., The T2 phase in the Nb–Si–B system studied by abinitio calculations and synchrotron X-ray diffraction, J. Solid State Chem., 2012, vol. 190, pp. 111–117.

    Article  CAS  Google Scholar 

  18. Cheng, J., Yi, S., and Sik Park, J., Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 103–109.

    Article  CAS  Google Scholar 

  19. Ukegawa, M., Yamauchi, A., Kobayashi, A., and Kurokawa, K., Interfacial reaction sin Nb/NbSi2 and Nb/NbSi2–B systems, Vacuum, 2009, vol. 83, pp. 157–160.

    Article  Google Scholar 

  20. Cheng, J., Yi, S., and Sik Park, J., Simultaneous coating of Si and B on Nb–Si–B alloys by a halide activated pack cementation method and oxidation behaviors of the alloys with coating sat 1100°C, J. Alloys Compd., 2015, vol. 644, pp. 975–981.

    Article  CAS  Google Scholar 

  21. Zhang, F., Zhang, L.T., Shan, A.D., and Wu, J.S., Microstructural effect on oxidation kinetics of NbSi2 at 1023 K, J. Alloys Compd., 2006, vol. 422, pp. 308–312.

    Article  CAS  Google Scholar 

  22. Sun, Z., Yang, Y., Guo, X., Zhang, C., and Chang, Y.A., Thermodynamic modeling of the Nb-rich corner in the Nb–Si–B system, Intermetallics, 2011, vol. 19, pp. 26–34.

    Article  CAS  Google Scholar 

  23. Junior, D.M.P., Nunes, C.A., Coelho, G.C., and Ferreira, F.V., Liquidus projection of the Nb–Si–B system in the Nbrich region, Intermetallics, 2003, vol. 11, pp. 251–255.

    Article  CAS  Google Scholar 

  24. Kurokawa, K., Yamauchi, A., and Matsushita, S., Improvement of oxidation resistance of NbSi2 by addition of boron, Mater. Sci. Forum, 2005, vol. 502, pp. 243–248.

    Article  CAS  Google Scholar 

  25. Murakami, T., Xu, C.N., Kitahara, A., Kawahara, M., Takahashi, Y., Inuy, H., and Yamaguchi, M., Microstructure,mechanical properties and oxidation behavior of power compacts of the Nb–Si–B system prepared by spark plasma sintering, Intermetallics, 1999, vol. 7, pp. 1043–1048.

    Article  CAS  Google Scholar 

  26. Behrani, V., Thom, A.J., Kramer, M.J., and Akinc, M., Microstructure and oxidation behavior of Nb–Mo–Si–B alloys, Intermetallics, 2006, vol. 14, pp. 24–32.

    Article  CAS  Google Scholar 

  27. Proc. 20th Annual Conf. on Composites, Advanced Ceramics, Materials, and Structures, A: Ceramic Engineering and Science Proceedings, Wachtman, J.B., Eds., New York: Wiley, 2008, vol. 17, no. 3, p. 131.

  28. Upolovnikova, A.G., Zhidovinova, S.V., and Larionov, A.V., Oxidation of eutectic Nb–Si alloys doped with boron, Privolzhsk. Nauch. Vestn., 2015, no. 10, pp. 33–36.

    Google Scholar 

  29. International Centre for Diffraction Data–ICDD, 2013. http://www.icdd.com/.

  30. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 2011, vol. 520, pp. 1–19.

    Article  CAS  Google Scholar 

  31. Brown, M.E., Dollimore, D., and Galway, A.K., Reaction in the solid state, in Comprehensive Chemical Kinetics, Bamford, C.H. and Tipper, C.F.H., Eds., Amsterdam: Elsevier, 1980, pp. 87–91.

    Google Scholar 

  32. Kofstad, P., High-Temperature Oxidation of Metals, New York: Wiley, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Mansurova.

Additional information

Original Russian Text © A.N. Mansurova, R.I. Gulyaeva, V.M. Chumarev, 2016, published in Perspektivnye Materialy, 2016, No. 8, pp. 37–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurova, A.N., Gulyaeva, R.I. & Chumarev, V.M. Kinetic analysis of the oxidation of Nb–Si eutectic alloy doped with boron. Inorg. Mater. Appl. Res. 8, 318–326 (2017). https://doi.org/10.1134/S2075113317020150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317020150

Keywords

Navigation