Skip to main content
Log in

The effect of cAMP-dependent protein kinase phosphorylation on the external Ca2+ binding sites of cardiac sarcoplasmic reticulum

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinase on a 22,000-dalton protein, Phosphorylation is associated with an increase in both the initial rate of Ca2+ uptake and the Ca2+-ATPase activity which is partially due to an increase in the affinity of the Ca2+-Mg2+-ATPase (E) of sarcoplasmic reticulum for calcium. In this study, the effect of cAMP-dependent protein kinase phosphorylation on the binding of calcium to the SR and on the dissociation of calcium from the SR was examined. The rate of dissociation of the E·Ca2 was measured directly and was not found to be significantly altered by cAMP-dependent protein kinase phosphorylation. Since the affinity of the enzyme for Ca2+ is equal to the ratio of the on and off rates of calcium, these results demonstrate that the observed change in affinity must be due to an increase in the rate of calcium binding to the Ca2+-Mg2+-ATPase of SR. In addition, an increase in the degree of positive cooperativity between the two calcium binding sites was associated with protein kinase phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, G. S. (1925).J. Biol. Chem. 63 529–545.

    Google Scholar 

  • Dupont, Y., and Leigh, G. B. (1978).Nature (London)273 396–398.

    Google Scholar 

  • Ebashi, S., and Endo, M. (1968).Prog. Biophys. Mol. Biol. 18 123–183.

    Google Scholar 

  • Froehlich, J. P., and Taylor, E. W. (1975).J. Biol. Chem. 250 2013–2021.

    Google Scholar 

  • Froehlich, J. P., and Taylor, E. W. (1976).J. Biol. Chem. 251 2307–2315.

    Google Scholar 

  • Guillain, F., Champeil, P., Lacapere, J-J., and Gingold, M. P. (1981).J. Biol. Chem. 256 6140–6147.

    Google Scholar 

  • Harigaya, S., and Schwartz, A. (1969).Circ. Res. 25 781–794.

    Google Scholar 

  • Hicks, M. J., Shigekawa, M., and Katz, A. M. (1979).Circ. Res. 44 384–391.

    Google Scholar 

  • Highsmith, S. R. (1982)Biochemistry 21 3786–3789.

    Google Scholar 

  • Hill, A. V. (1910).J. Physiol. (London)40 190–214.

    Google Scholar 

  • Inesi, G., Coan, C., Verjovski-Almeida, S., Kurzmack, M., and Lewis, D. E. (1979). InFrontiers of Biological Energetics (Dutton, L. P., ed.), Vol. 2, Academic Press, New York, pp. 1129–1139.

    Google Scholar 

  • Inesi, G., Kurzmack, M., Coan, C., and Lewis, D. E. (1980).J. Biol. Chem. 225 3025–3031.

    Google Scholar 

  • Jones, L. R., Maddock, S. W., and Hathaway, D. R. (1981).Biochim. Biophys. Acta 641 242–253.

    Google Scholar 

  • Katz, A. M. (1970).Physiol. Rev. 50 63–158.

    Google Scholar 

  • Kirchberger, M. A., Tada, M., and Katz, A. M. (1974).J. Biol. Chem. 249 6166–6173.

    Google Scholar 

  • Kranias, E. G., Bilezikjian, L. M., Potter, J. D., Piascik, M. T., and Schwartz, A. (1980a).Ann. N.Y. Acad. Sci. 356 279–291.

    Google Scholar 

  • Kranias, E. G., Mandel, F., Wang, T., and Schwartz, A. (1980b).Biochemistry 19 5434–5439.

    Google Scholar 

  • LaRaia, P. J., and Morkin, E. (1974).Circ. Res. 35 298–305.

    Google Scholar 

  • Le Peuch, C. J., Haiech, J., and DeMaille, J. G. (1979).Biochemistry 18 5150–5157.

    Google Scholar 

  • Mandel, F., Kranias, E., Grassi de Gende, A. O., Sumida, M., and Schwartz, A. (1982).Circ. Res. 50 310–317.

    Google Scholar 

  • Rasmussen, H. (1970).Science 170 404–412.

    Google Scholar 

  • Robinson, G. A., Butcher, R. W., and Sutherland E. W. (1967).Ann. N.Y. Acad. Sci. 139 703–723.

    Google Scholar 

  • Sandow, A. (1965).Pharmacol. Rev. 17 265–320.

    Google Scholar 

  • Schwartz, A., Entman, M. L., Kaniike, K., Lane, L. K., Van Winkle, W. B., and Bornet, E. P. (1976).Biochim. Biophys. Acta 426 57–72.

    Google Scholar 

  • Sillen, L. G., and Martell, A. E. (1964). InStability Constants of Metal-Ion Complexes, 2nd edn., Ser. Publ. No. 17, The Chemical Society, Burlington House, London.

    Google Scholar 

  • Sumida, M., Wang, T., Mandel, F., Froehlich, J. P., and Schwartz, A. (1978).J. Biol. Chem. 253 8772–8777.

    Google Scholar 

  • Tada, M., Kirchberger, M. A., Repke, D. I., and Katz, A. M. (1974).J. Biol. Chem. 249 6174–6180.

    Google Scholar 

  • Tada, M., Yamamoto, T., and Tonomura, Y. (1978).Physiol. Rev. 58 1–79.

    Google Scholar 

  • Tada, M., Ohmori, F., Yamada, M., and Abe, H. (1979).J. Biol. Chem. 254 319–326.

    Google Scholar 

  • Tada, M., Yamada, M., Ohmori, F., Kuzuya, T., Inui, M., and Abe, H. (1980).J. Biol. Chem. 255 1985–1992.

    Google Scholar 

  • Will, H., Blanck, J., Smettan, G., and Wollenberger, A. (1976).Biochim. Biophys. Acta 449 225–303.

    Google Scholar 

  • Wollenberger, A., and Will, H. (1978).Life Sci. 22 1159–1178.

    Google Scholar 

  • Wray, H. L., and Gray, R. R. (1977).Biochim. Biophys. Acta 461 441–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandel, F., Kranias, E.G. & Schwartz, A. The effect of cAMP-dependent protein kinase phosphorylation on the external Ca2+ binding sites of cardiac sarcoplasmic reticulum. J Bioenerg Biomembr 15, 179–194 (1983). https://doi.org/10.1007/BF00743939

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743939

Key Words

Navigation