Skip to main content
Log in

Enzymatic transfer of sialic acids modified at C-5 employing four different sialyltransferases

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We present kinetic studies on the enzymatic transfer of several synthetic sialic acid analogues, modified at C-5, to distinct glycoprotein glycans by sialytransferases differing in acceptor- and linkage-specificity. Biochemical properties of sialic acids were modified by introducing formyl-, trifluoroacetyl-, benzyloxycarbonyl-, and aminoacetyl-groups to the amino group at C-5 of neuraminic acid. The latter substitution renders the corresponding α-glyocoside resistant towards sialidases. The respective CMP-sialic acid analogues were prepared by CMP-sialic acid synthase with a yield of 13–55%.

The kinetic parameters of several sialyltransferases for the 5-substituted CMP-glycosides differed significantly. Relative to parent CMP-NeuAc, reaction rates of human- and rat liver Galβ1, 4GlcNAc α2,6-sialyl-transferases ranged from 50 to 170%, of GalNAc α2,6-sialyltransferases from 40–140%, and of Galβ1,3Gal-NAc α2,3-sialyltransferase from 20–50%. Resialylation of asialo-α1-acid glycoprotein by 5-N-formyl- and 5-N-aminoacetyl-neuraminic acid employing rat liver Galβ1,4GlcNAc α2,6-sialyltransferase proceeded to about 80% of galactose sites which is identical to the extent achieved with parent NeuAc.

According to our data, neosialoglycoconjugates which carry sialic acids modified at theN-acetyl group can be prepared for structure-function analysis, as this position seems crucial for recognition of adhesion proteins and influenza viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varki A (1992)Curr Opin Cell Biol 4: 257–66.

    Google Scholar 

  2. Schauer R (1985)Trends Biochem Sci 10: 357–60.

    Google Scholar 

  3. Schwartz-Albiez R, Moldenhauer G, Kuipers J, Möller P, Funderud S, Bast B (1995) InLeukozyte Typing IV (Knapp W, Dörken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, von dem Borne AEGK, eds) Oxford: Oxford University Press (in press).

    Google Scholar 

  4. Paulson JC, Rogers GN, Caroll SM, Higa HH, Pritchett T, Milks G, Sabesan S (1984)Pure Appl Chem 56: 797–805.

    Google Scholar 

  5. Rogers GN, Herrler G, Paulson JC, Klenk H-D (1986)J Biol Chem 261: 5947–51.

    Google Scholar 

  6. Higa HH, Rogers GN, Paulson JC (1985)Virology 144: 279–82.

    Google Scholar 

  7. Klotz FW, Orlandi PA, Reuter G, Cohen SJ, Haynes JD, Schauer R, Howard RJ, Palese P, Miller LH (1992)Mol Biochem Parasitol 51: 49–54.

    Google Scholar 

  8. Pilatte Y, Bignon J, Lambré CR (1993)Glycobiology 3: 201–18.

    Google Scholar 

  9. Springer TA (1994)Cell 76: 301–14.

    Google Scholar 

  10. Erbe DV, Watson SR, Presta LG, Wolitzky BA, Foxall C, Brandley BK, Lasky LA (1993)J Cell Biol 120: 1227–35.

    Google Scholar 

  11. Stamenkovic I, Sgroi D, Aruffo A, Sy MS, Anderson T (1991)Cell 66: 1133–44.

    Google Scholar 

  12. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, Crocker PR (1994)Curr Biol 4: 965–72.

    Google Scholar 

  13. Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton DM, Paulson JC, Gordon S (1991)EMBO J 10: 1661–69.

    Google Scholar 

  14. Brossmer R, Groß HJ (1994)Methods Enzymol 247: 153–76.

    Google Scholar 

  15. Groß HJ, Bünsch A, Paulson JC, Brossmer R (1987)Eur J Biochem 168: 595–602.

    Google Scholar 

  16. Groß HJ, Brossmer R (1987)Glycoconjugate J 4: 145–56.

    Google Scholar 

  17. Groß HJ, Brossmer R (1988)Eur J Biochem 177: 583–89.

    Google Scholar 

  18. Groß HJ, Rose U, Krause JM, Paulson JC, Schmid K, Feeney RE, Brossmer R (1989)Biochemistry 28: 7386–92.

    Google Scholar 

  19. Groß HJ, Sticher U, Brossmer R (1990)Anal Biochem 186: 127–34.

    Google Scholar 

  20. Herrler G, Groß HJ, Imhof A, Brossmer R, Milks G, Paulson JC (1992)J Biol Chem 267: 12501–5.

    Google Scholar 

  21. Brossmer R, Isecke R, Herrler G (1993)FEBS Lett 323: 96–98.

    Google Scholar 

  22. Groß HJ (1992)Eur J Biochem 203: 269–75.

    Google Scholar 

  23. Kosa R, Brossmer R, Groß HJ (1993)Biochem Biophys Res Commun 190: 914–20.

    Google Scholar 

  24. Sticher S, Groß HJ, Brossmer R (1988)Biochem J 253: 577–80.

    Google Scholar 

  25. Sadler JE, Rearick JI, Paulson JC, Hill R (1979)J Biol Chem 254: 4434–43.

    Google Scholar 

  26. Brossmer R, Nebelin E (1969)FEBS Lett 4 335–36.

    Google Scholar 

  27. Kuhn R, Baschang G (1962)Liebigs Ann Chem 659: 156–63.

    Google Scholar 

  28. Warren L (1959)J Biol Chem 234: 1971–75.

    Google Scholar 

  29. Weinstein J, de Souza-e-Silva U, Paulson JC (1982)J Biol Chem 257: 13835–44.

    Google Scholar 

  30. Higa HH, Paulson JC (1985)J Biol Chem 260: 8838–49.

    Google Scholar 

  31. Groß HJ, Brossmer R (1988)Glycoconjugate J 5: 411–17.

    Google Scholar 

  32. Brossmer R, Groß HJ (1994)Methods Enzymol 247: 176–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groß, H.J., Brossmer, R. Enzymatic transfer of sialic acids modified at C-5 employing four different sialyltransferases. Glycoconjugate J 12, 739–746 (1995). https://doi.org/10.1007/BF00731233

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731233

Keywords

Navigation