Skip to main content
Log in

Vascular permeability and axonal regeneration in tissues autotransplanted into the brain

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Pieces of skin, peripheral nerve, muscle, tendon, thyroid gland, and submandibular gland were autotransplanted into the brains of mice. The animals were killed after 5-week periods. Fluorescently labelled albumin was injected i.v. 1 h prior to death. Silver-impregnated sections were examined under the light microscope for the regeneration of axons from the brains into the implanted tissues. Unstained sections were studied by fluorescence microscopy for the presence of the labelled tracer in the extracellular spaces of the grafts. The muscle and submandibular gland received the fewest regenerating axons, skin and tendon received an intermediate amount of reinnervation, and the thyroid gland and vagus nerve were the most richly innervated. The amount of reinnervation could be roughly correlated with the presence of extravascular protein within the tissues. These data support the hypothesis that regeneration of axons may be dependent upon a source of protein in the extracellular fluid surrounding their growing tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakay L (1972) Alteration of the brain barrier system in pathological states. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press. New York London, pp 417–427

    Google Scholar 

  • Barnard, JW, Carpenter W (1950) Lack of regeneration in the spinal cord of rat. J Neurophysiol 13:223–228

    Google Scholar 

  • Björklund A, Stenevi U (1971) Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res 31:1–20

    Google Scholar 

  • Björklund A, Bjerre B, Stenevi U (1973) Has nerve growth factor a role in the regeneration of central and peripheral catecholamine neurons? In: Fuxe K, Olson L, Zotterman Y (eds) Dynamics of degeneration and growth in neurons. Pergamon Press, Oxford New York Toronto Sydney, pp 389–409

    Google Scholar 

  • Cason JE (1951) A rapid one-step Mallory-Heidenhein stain for connective tissue. Stain Technol 25:225–226

    Google Scholar 

  • Cockett SA, Kiernan JA (1973) Acceleration of peripheral nervous regeneration in the rat by exogenous triiodothyronine. Exp Neurol 39:389–394

    Google Scholar 

  • Endo M (1964) Entry of a dye into the sarcotubular system of muscle. Nature 202:1115–1116

    Google Scholar 

  • Erikson LB, Glees P (1953) Sprouting of cortical nerve fibers following skin homografts into the cerebral cortex. J Physiol 120:17P (Abstract)

    Google Scholar 

  • Fertig A, Kiernan JA, Seyan SSAS (1971) Enhancement of axonal regeneration in the brain of the rat by corticotrophin and triiodothyronine. exp Neurol 33:372–385

    Google Scholar 

  • Glees P (1955) Studies of cortical regeneration with special reference to cerebral implants. In: Windle WF (ed) Regeneration in the central nervous system. Thomas, Springfield, Illinois, pp 94–111

    Google Scholar 

  • Glees P, Erikson L (1953) Untersuchungen über die Regenerationsfähigkeit der Hirnrinde nach experimenteller Einpflanzung von Haut in das Hirngewebe des Kaninchens. Verh Anat Ges 51:101–111. Quoted in Glees P (1955)

    Google Scholar 

  • Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22:291–304

    Google Scholar 

  • Ham AW (1974) Histology, 7th edn. Lippincot, Philadelphia Toronto, p 369

    Google Scholar 

  • Harvey JE, Srebnik HH (1967) Locomotor activity and axon regeneration following spinal cord compression in rats treated withl-thyroxine. J Neuropathol Exp Neurol 26:661–668

    Google Scholar 

  • Heinicke E (1977) Influence of exogenous triiodothyronine on axonal regeneration and wound healing in the brain of the rat. J Neurol Sci 31:293–305

    Google Scholar 

  • Heinicke EA, Kiernan JA (1978) Vascular permeability and axonal regeneration in skin autotransplanted into the brain. J Anat 125:409–420

    Google Scholar 

  • Hill DK (1964) The space accessible to albumin within the striated muscle fibre of the toad. J Physiol 175:275–294

    Google Scholar 

  • Hogg RM, Simpson R (1975) An evaluation of solochrome cyanine RS as a nuclear stain similar to haematoxylin. Med Lab Technol 32:301–306

    Google Scholar 

  • Holmes W (1943) Silver staining of nerve axons in paraffin sections. Anat Rec 86:157–187

    Google Scholar 

  • Horvat J-C (1965) Incitation expérimentale de la régénération cérébelleuse chez la souris par greffe bréphoplastique de glande sous-maxillaire. CR Assoc Anat 49:836–848

    Google Scholar 

  • Horvat J-C (1966) Comparaison des réactions régénératives provoquées dans le cerveau et dans le cervelet de la souris par des greffes tissulaires intraraciales. CR Assoc Anat 51:487–499

    Google Scholar 

  • Horvat J-C (1967a) Reactions régénératives provoquées au niveau de la moelle épinière thoracique de la souris par la greffe de nerfs et de quelques tissus non nerveux. CR Assoc Anat 52:659–669

    Google Scholar 

  • Horvat J-C (1967b) Réactions régénératives provoquées dans le cervelet de la souris par des greffes tissulaires homoplastiques et bréphoplastiques. Arch Sci Physiol 21:323–343

    Google Scholar 

  • Horvat J-C (1969) Aspects ultrastructuraux de la réhabiation de fragments de glande sous-maxillaire transplantés dans la moelle épinière de la souris, par des fibres nerveuses d'origine centrale. CR Assoc Anat 54:218–230

    Google Scholar 

  • Huxley HE (1964) Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202:1067–1071

    Google Scholar 

  • Kao CC (1974) Comparison of healing process in transected spinal cords grafted with autogenous brain tissue, sciatic nerve, and nodose ganglion. Exp Neurol 44:424–439

    Google Scholar 

  • Kao CC, Chang LW, Bloodworth JMB (1977) Axonal regeneration across transected mammalian spinal cords: an electron microscopic study of delayed microsurgical nerve grafting. Exp Neurol 54:591–615

    Google Scholar 

  • Karnovsky MJ (1965) Vesicular transport of exogenous peroxidase across capillary endothelium into the T system of muscle. J Cell Biol 27:49A-50A (Abstract)

    Google Scholar 

  • Kiernan JA (1969) Studies on nervous regeneration. Ph. D. thesis, University of Birmingham

  • Kiernan JA (1978) An explanation of axonal regeneration in peripheral nerves and its failure in the central nervous system. Med Hypotheses 4:15–26

    Google Scholar 

  • Kiernan JA (1979) Production and life span of cutaneous mast cells in young rats. J Anat 128:225–238

    Google Scholar 

  • Klatzo I, Miquel J (1960) Observations on pinocytosis in nervous tissue. J Neuropathol Exp Neurol 19:475–487

    Google Scholar 

  • Klatzo I, Miquel J, Otenaser R (1962) The application of fluoresceinlabeled serum proteins (FLSP) to the study of vascular permeability in the brain. Acta Neuropathol (Berl) 2:144–160

    Google Scholar 

  • Lee J, Olszewski J (1959) Permeability of cerebral blood vessels in healing of brain wounds. Neurology (Minneap) 9:7–14

    Google Scholar 

  • Le Gros Clark WE (1942) The problem of neuronal regeneration in the central nervous system. I. The influence of spinal ganglia and nerve fragments grafted in the brain. J Anat 77:20–48

    Google Scholar 

  • Le Gros Clark WE (1943) The problem of neuronal regeneration in the central nervous system. II. The insertion of peripheral nerve stumps into the brain. J Anat 77:251–259

    Google Scholar 

  • Libelius R, Josefsson J-O, Lundquist I (1979) Endocytosis in chronically denervated mouse skeletal muscle. A biochemical and ultrastructural study with horseradish peroxidase. Neurosci 4:283–292

    Google Scholar 

  • Melsaac G, Kiernan JA (1975a) Accelerated recovery from peripheral nerve injury in experimental hyperthyroidism. Exp Neurol 48:88–94

    Google Scholar 

  • McIsaac G, Kiernan JA (1975b) Acceleration of neuromuscular reinnervation by triiodothyronine. J Anat 120:551–560

    Google Scholar 

  • McQuarric IG (1975) Nerve regeneration and thyroid hormone treatment. J Neurol Sci 26:499–502

    Google Scholar 

  • Medawar PB (1948) Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69

    Google Scholar 

  • Nairn RC (1976) Fluorescent protein tracing, 4th edn. Churchill Livingstone, Edinburgh London, New York

    Google Scholar 

  • Nathaniel EJH, Clemente CD (1959) Growth of nerve fibers into skin and muscle grafts in rat brains. Exp Neurol 1:65–81

    Google Scholar 

  • Olsson Y, Hossmann K-A (1970) Fine structural localization of exudated protein tracers in the brain. Acta Neuropathol (Berl) 16:103–116

    Google Scholar 

  • Page S (1964) The organization of the sarcoplasmic reticulum in frog muscle. J Physiol 175:10P-11P

    Google Scholar 

  • Persson L, Hansson H-A, Sourander P (1976) Extravasation, spread, and cellular uptake of Evans blue-labelled albumin around a reproducible small stab-wound in the rat brain. Acta Neuropathol (Berl) 34:125–136

    Google Scholar 

  • Rinder L, Olsson Y (1968) Studies on vascular permeability changes in experimental brain concussion. Acta Neuropathol (Berl) 11:183–200

    Google Scholar 

  • Shirai S (1935) Experimentelle Untersuchungen über die Degenerations- und Regenerationsvorgänge der Nervenfasern im intrazerebral transplantierten Gewebe. Mitt Med Akad Kioto 14:226–250. Quoted in Glees P (1955)

    Google Scholar 

  • Sugar O, Gerard RW (1940) Spinal cord regeneration in the rat. J Neurophysiol 3:1–19

    Google Scholar 

  • Tello F (1911) La influencia del neurotropismo en la regeneración de los centros nerviosos. Trab Lab Invest Biol (Univ. Madrid) 9:123. Quoted in Le Gros Clark WE (1942)

    Google Scholar 

  • Van Gilder JC, Schwartz HG (1967) Growth of dermoids from skin implants to the nervous system and surrounding spaces of the newborn rat. J Neurosurg 26:14–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinicke, E.A. Vascular permeability and axonal regeneration in tissues autotransplanted into the brain. Acta Neuropathol 49, 177–185 (1980). https://doi.org/10.1007/BF00707104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00707104

Key words

Navigation