Skip to main content
Log in

Neurons with different neurotransmitters in embryonic neocortical allografts in the rat sciatic nerve

  • Developmental Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Different subsets of interneurons in the Wistar rat neocortex and in neocortical transplants developing in a damaged nerve were identified by the following immunohistochemical markers: glutamate decarboxylase (GAD 67) for GABAergic nerve cells, NO-synthase (NOS) for NO-ergic neurons, choline acetyltransferase (ChAT) for cholinergic cells, and tyrosine hydroxylase for catecholaminergic structures. Twentyeight days after surgery, individual GAD 67-ir, NO-ir, ChAT-ir, and very rarely TH-ir cells were detected in the graft. It was shown that the number of GAD 67-ir neurons per unit area in the grafts was less than in the rat neocortex P20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmus, S.E., Cocanougher, B.T., Allen, D.L., Boone, J.B., Brooks, T.A., Hawkins, S.M., Hench, L.A., Ijaz, T., and Mayfield, M.N., Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex, Brain Res., 2011, vol. 6, no. 1383, pp. 108–119.

    Article  Google Scholar 

  • Baez, J.C., Gajavelli, S., Thomas, C.K., Grumbles, R.M., Aparicio, B., Byer, D., and Tsoulfas, P., Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve, Exp. Neurol., 2004, vol. 189, no. 2, pp. 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Bartolini, G., Ciceri, G., and Marin, O., Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults, Neuron, 2013, vol. 79, no. 5, pp. 849–864.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, J.J., Viability, growth and maturation of fetal brain and spinal cord in the sciatic nerve of adult rat, J. Neurosci. Res., 1983, vol. 10, no. 4, pp. 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Cauli, B., Audinat, E., Lambolez, B., Angulo, M.C., Ropert, N., Tsuzuki, K., Hestrin, S., and Rossier, J., Molecular and physiological diversity of cortical non pyramidal cells, J. Neurosci., 1997, vol. 17, no. 10, pp. 3894–3906.

    CAS  PubMed  Google Scholar 

  • Chelyshev, Yu.A., Regeneratsiya v nervnoi sisteme. Rukovodstvo po gistologii (Regeneration in the Nervous System. Guidelines for Histology), Danilov, R.K., Eds., St. Petersburg: SpetsLit, 2011, vol. 1.

  • Chumasov, E.I. and Petrova, E.S., Implantation of embryonic neocortex and spinal cord into injured peripheral nerve of adult rats, Byull. Eksp. Biol. Med., 1990, vol. 108, no. 8, pp. 198–201.

    Google Scholar 

  • Consonni, S., Leone, S., Becchetti, A., and Amadeo, A., Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex, BMC Neurosci., 2009, vol. 10, p. 18. doi 10.1186/1471-2202-10-18

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFelipe, J., Neocortical neuronal diversity: chemical heterogeneity revealed by co-localization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules, Cereb. Cortex, 1993, vol. 3, pp. 273–289.

    CAS  PubMed  Google Scholar 

  • Dyban, A.P., Puchkov, V.F., Baranov, V.S., Samoshkina, N.A., and Chebotar’, N.A., Laboratory mammals, in Obekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 505–567.

    Google Scholar 

  • Fairbairn, N.G., Meppelink, A.M., Ng-Glazier, J., Randolph, M.A., and Winograd, J.M., Augmenting peripheral nerve regeneration using stem cells: a review of current opinion, World J. Stem Cells, 2015, vol. 7, no. 1, pp. 11–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallon, J.H., Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex, J. Neurosci., 1981, vol. 1, no. 12, pp. 1361–1368.

    CAS  PubMed  Google Scholar 

  • von Engelhardt J., Eliava M., Meyer A.H., Rozov A., Monyer H. Functional characterization of intrinsic cholinergic interneurons in the cortex, J. Neurosci., 2007, vol. 27, no. 21, pp. 5633–5642.

    Article  CAS  PubMed  Google Scholar 

  • Grigor’ev, I.P., Petrova, E.S., Gilerovich, E.G., Vlasov, T.D., and Korzhevskii, D.E., Izmenenie katekholaminergicheskoi innervatsii kory bol’shikh polusharii golovnogo mozga krys posle tranzitornoi ishemii, in statei XI mezhdunar. konf. “Fundamental’nye i prikladnye issledovaniya, razrabotka i primenenie vysokikh tekhnologii v promyshlennosti” (Proc. XI Intern. Conf. “The Fundamental and Applied Research, Development and Application of High Technologies in Industry”), St. Petersburg: Izd-vo SPbPU, 2011, vol. 1, pp. 209–211.

    Google Scholar 

  • Grigor’ev, I.P., Gilerovich, E.G., Petrova, E.S., Vlasov, T.D., and Korzhevskii, D.E., Katekholaminergicheskie struktury perednego mozga krys posle tranzitornoi ishemii, Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya, 2012, vol. 11, no. 2, pp. 57–60.

    Google Scholar 

  • Grumbles, R.M., Liu, Y., Thomas, C.M., Wood, P.M., and Thomas, C.K., Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation, J. Neurotrauma, 2013, vol. 30, no. 12, pp. 1062–1069.

    PubMed  Google Scholar 

  • Houser, C.R., Crawford, G.D., Salvaterra, P.M., and Vaughn, J.E., Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergicneurons and synapses, J. Comp. Neurol., 1985, vol. 234, no. 1, pp. 17–34.

    Article  CAS  PubMed  Google Scholar 

  • Khozhai, L.I. and Otellin, V.A., Distribution of GABAergic neurons in the neocortex of rats in the postnatal period after perinatal hypoxia, Morfologiya, 2014, vol. 146, no. 4, pp. 7–10.

    CAS  Google Scholar 

  • Korzhevskii, D.E., Kirik, O.V., Petrova, E.S., Karpenko, M.N., Grigor’ev, I.P., Sukhorukova, E.G., Kolos, E.A., and Gilyarov, A.V., Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii (rukovodstvo), Korzhevskii, D.E., Ed., St. Petersburg: SpetsLit, 2014.

  • Levitt, P., Eagleson, K.L., and Powell, E.M., Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders, Trends Neurosci., 2004, vol. 27, pp. 400–406.

    Article  CAS  PubMed  Google Scholar 

  • Le Magueresse, C. and Monyer, H., GABAergic interneurons shape the functional maturation of the cortex, Neuron, 2013, vol. 77, no. 3, pp. 388–405.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C., Interneurons of the neocortical inhibitory system, Nat. Rev./Neuroscience, 2004, vol. 5, pp. 793–807.

    Article  CAS  PubMed  Google Scholar 

  • Motavkin, P.A. and Dyuizen, I.V., Nitroxide-ergic mechanisms of pain development, Tikhookean. Med. Zh., 2003, no. 2, pp. 11–16.

    Google Scholar 

  • Murakami, T., Fujimoto, Y., Yasunaga, Y., Ishida, O., Tanaka, N., Ikuta, Y., and Ochi, M., Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair, Brain Res., 2003, vol. 974, nos. 1–2, pp. 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (The Peripheral Nervous System), St. Petersburg: Nauka, 1990.

    Google Scholar 

  • Obukhov, D.K., Modern understanding of the development, structure, and evolution of the telencephalon neocortex of mammals and humans, in Voprosy morfologii XXI veka (Problems of Morphology of the XXI Century), Kostyukevich, S.V., Ed., St. Petersburg: SPbGMA, DEAN, 2008, vol. 1, pp. 200–223.

    Google Scholar 

  • Obukhov, D.K., Pushchina, E.V., and Varaksin, A.A., The gaseous neurotransmitters in the central nervous system of vertebrates, Uspekhi Sovrem. Estestvoznan., 2011, no. 12, pp. 49–51.

    Google Scholar 

  • Petrova, E.S. and Isaeva, E.N., Study of effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve, Biol. Bull. (Moscow), 2014, vol. 41, no. 6, pp. 479–485.

    Article  CAS  Google Scholar 

  • Petrova, E.S. and Otellin, V.A., NADPH-positive neurons in heterotopic transplants of embryonic CNS, Bull. Exp. Biol. Med., 2000, vol. 130, no. 12, pp. 1202–1205.

    Article  CAS  PubMed  Google Scholar 

  • Petrova, E.S., Vlasov, T.D., Kolos, E.A., and Korzhevskii, D.E., GABAergic neurons in the striatum of rats in normal state and in ischemic injury, Asimmetriya, 2013, vol. 7, no. 3, pp. 4–9.

    Google Scholar 

  • Rajkowska, G., O’Dwyer, G., Teleki, Z., Stockmeier, C.A., and Miguel-Hidalgo, J.J., GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression, Neuropsychopharmacology, 2007, vol. 32, pp. 471–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reutov, V.P., Sorokina, E.G., Okhotin, I.E., and Kositsyn, N.S., Tsiklicheskie prevrashcheniya azota v organizme mlekopitayushchikh (Cyclic Nitrogen Conversion in Mammals), Moscow: Nauka, 1998.

    Google Scholar 

  • Reynolds, G.P., Beasley, C.L., and Zhang, Z.J., Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons, J. Neural. Transm., 2002, vol. 109, pp. 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Vizi, E.S., Kiss, J.P., and Lendvai, B., Nonsynaptic communication in the central nervous system, Neurochem. Intern., 2004, vol. 45, no. 4, pp. 443–451.

    Article  CAS  Google Scholar 

  • Walsh, S. and Midha, R., Use of stem cells to augment nerve injury repair, Neurosurgery, 2009, vol. 65, no. 4, pp. 80–86.

    Article  Google Scholar 

  • Wu, J.Y., Matsuda, T., and Roberts, E., Purification and characterization of glutamate decarboxylase from mouse brain, J. Biol. Chem., 1973, vol. 248, no. 9, pp. 3029–3034.

    CAS  PubMed  Google Scholar 

  • Xiong, G., Ozaki, N., and Sugiura, Y., Transplanted embryonic spinal tissue promotes severed sciatic nerve regeneration in rats, Arch. Histol. Cytol., 2009, vol. 72, no. 2, pp. 127–138.

    Article  PubMed  Google Scholar 

  • Zaitsev, A.V., Morphological and functional properties of different types of neurons and their synaptic connections in the prefrontal cortex of macaque and rat, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Inst. Evol. Fiziol. Biokhim. RAN, 2014.

    Google Scholar 

  • Zhang, Z.-W., Kang, J., and Vaucher, E., Axonal varicosity density as an index of local neuronal interactions, PLoS One, 2011, vol. 6, no. 7, p. e22543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Petrova.

Additional information

Original Russian Text © E.S. Petrova, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 2, pp. 128–135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.S. Neurons with different neurotransmitters in embryonic neocortical allografts in the rat sciatic nerve. Biol Bull Russ Acad Sci 43, 97–103 (2016). https://doi.org/10.1134/S1062359016020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016020059

Keywords

Navigation