Skip to main content
Log in

Clusters containing ynamine ligands. 4. The synthesis and characterizations of ReMn(CO)8 [μ-MeC2NMe2] and ReMn(CO)7 [μ-MeCC(NMe2)C(NMe2)CMe] and the development of a bonding model for the coordination of ynamines to M2(CO)8 clusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The compound ReMn(CO)8 (μ-MeC2NMe2),2 was obtained in 11% yield by the decarbonylation of ReMn(CO)10 with Me3NO followed by reaction MeC2NMe2. Compound2 will add one equivalent of MeC2NMe2 at 25°C to yield the mixed metal complex ReMn(CO)7 [μ-C(Me) C(NMe2) C(NMe2) C(Me)],3 in 7% yield. Compounds2 and3 were characterized by IR,1H NMR, and single crystal x-ray diffraction analyses. Compound2 exists as two isomers. Each isomer contains an asymmetric bridging ynamine ligand. The principal isomer has the amine-substituted carbon atom coordinated to the manganese atom. The minor isomer has the amine-substituted carbon atom coordinated to the rhenium atom. In compound3 the two ynamines have been coupled in a head-to-head fashion to produce a ferrole-like structure in which the coupled ligands are π-bonded to the manganese atom. Extended Hückel molecular orbital calculations were performed on the parent complex Re2(CO)8 (μ-MeC2NMe2),1 to try to understand the reasons for the preferred asymmetric coordination of the ynamine ligand in1 and2. It was found that the asymmetric coordination permits a strong stabilizing interaction between the one of the π* orbitals of the ligand and the metallic orbital that is principally responsible for the formation of the metal-metal bond. Crystal Data: for2: space group=P21/c,a=9.740(1)Å,b=11.293(2)Å,c=15.483(3)Å, β=97.46(1)°,Z=4, 1876 reflections,R=0.026; for3: space group=Pca21,a=17.541(2)Å,b=8.441(1)Å,c=14.033(3)Å,Z=4, 1335 reflections,R=0.022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Nomikou, J. F. Halet, R. Hoffmann, J. T. Tanner, and R. D. Adams (1990).Organometallics 9, 588.

    Google Scholar 

  2. E. Cabrera, J. C. Daran, Y. Jeannin, and O. Kristiansson, (1986).J. Organomet. Chem. 310, 367;

    Google Scholar 

  3. F. Muller, G. van Koten, M. J. Kraakman, K. Vrieze, D. Heijdenrijk, and M. C. Zoutberg (1989).Organometallics 8, 1331;

    Google Scholar 

  4. R. D. Adams and J. T. Tanner (1989).Organometallics 8, 563.

    Google Scholar 

  5. R. D. Adams and J. T. Tanner (1988).Organometallics 7, 2241;

    Google Scholar 

  6. A. J. Deeming, S. E. Kabir, D. Nuel, and N. I. Powell (1989).Organometallics 8, 717.

    Google Scholar 

  7. R. D. Adams, G. Chen, J. T. Tanner, and J. Yin (1990).Organometallics 9, 595.

    Google Scholar 

  8. R. D. Adams, G. Chen J. T. Tanner, and J. Yin, (1990).Organometallics 9, 1240;

    Google Scholar 

  9. R. D. Adams, G. Chen, S. Sun, J. T. Tanner, and T. A. Wolfe (1990).Organometallics 9, 251.

    Google Scholar 

  10. R. D. Adams, G. Chen, J. T. Tanner, and J. Yin (1990).Organometallics 9, 1523.

    Google Scholar 

  11. R. D. Adams, G. Chen, and J. T. Tanner, (1990).Organometallics 9, 1530.

    Google Scholar 

  12. R. D. Adams, G. Chen, and J. Yin (1991).Organometallics 10, 1279.

    Google Scholar 

  13. A. N. Nesmeyanov, K. N. Anisimov, H. Ye. Kolobova, and I. S. Kolomnikov (1963).Izv. Akad. Nauk SSSR, Otd. Khim. Naud 194.

  14. L. Brandsma,Preparative Acetylenic Chemistry (Elsevier, Amsterdam, 1971), p. 146.

    Google Scholar 

  15. R. Hoffmann (1963).J. Chem. Phys. 39, 1397.

  16. J. H. Ammeter, H.-B. Bürgi, J. Thibeault, and R. Hoffmann, (1978).J. Am. Chem. Soc. 100, 3686.

    Google Scholar 

  17. International Tables for X-ray Crystallography (Kynoch Press, Birmingham, England, 1975), Vol. IV, Table 2.2B, pp. 99–101; Table 2.3.1, pp. 149–150.

  18. D. M. Hoffmann, R. Hoffmann, and C. R. Fisel (1982).J. Am. Chem. Soc. 104, 3858 (and references therein).

    Google Scholar 

  19. K. J. Ahmed, M. H. Chisholm, K. Folting, and J. C. Huffman (1986).Organometallics 5, 2171.

    Google Scholar 

  20. E. Valencia, B. D. Santarsiero, S. J. Gelb, A. L. Rheingold, and J. M. Mayer (1987).J. Am. Chem. Soc. 109, 6896;

    Google Scholar 

  21. F. A. Cotton and M. Shang (1990).Inorg. Chem. 29, 508.

    Google Scholar 

  22. M. J. Calhorda, and R. Hoffmann (1986).Organometallics 5, 2187;

    Google Scholar 

  23. F. A. Cotton and X. Feng (1990).Inorg. Chem. 29, 3187.

    Google Scholar 

  24. F. A. Cotton, J. D. Jamerson, and B. R. Stults (1976).J. Am. Chem. Soc. 98, 1774.

    Google Scholar 

  25. M. Elian and R. Hoffmann (1975).Inorg. Chem. 14, 1058;

    Google Scholar 

  26. T. A. Albright, R. Hoffmann, J. C. Thibeault, and D. L. Thorn (1979).J. Am. Chem. Soc. 101, 3801.

    Google Scholar 

  27. I. S. Butler and J. F. Harrod,Inorganic Chemistry: Principles and Applications (The Benjamin/Cummings Publishing Company, 1989), p. 61.

    Google Scholar 

  28. D. E. Fjare and W. L. Gladfelter (1984).J. Am. Chem. Soc. 106, 4799;

    Google Scholar 

  29. S. Harris, M. L. Blohm, and W. L. Gladfelter (1989).Inorg. Chem. 28, 2290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, R.D., Chen, G., Chen, L. et al. Clusters containing ynamine ligands. 4. The synthesis and characterizations of ReMn(CO)8 [μ-MeC2NMe2] and ReMn(CO)7 [μ-MeCC(NMe2)C(NMe2)CMe] and the development of a bonding model for the coordination of ynamines to M2(CO)8 clusters. J Clust Sci 2, 83–103 (1991). https://doi.org/10.1007/BF00702950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702950

Key words

Navigation