Skip to main content
Log in

Physiology and composition of molting fluid and midgut lumenal contents in the silkmothHyalophora cecropia

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The concentrations of sodium, potassium, calcium, magnesium, chloride, trehalose, total phosphates, labile phosphates, amino acids, proteins and polypeptides, and the osmotic pressures were determined in pharate pupal hemolymph and molting fluid, and pupal hemolymph and midgut lumenal contents.

  2. 2.

    The osmotic pressures of molting fluid and midgut lumenal contents were 40 and 56% greater, respectively, than those of hemolymph. To account for this increase in molting fluid, I proposed that cells in the epidermis actively transport potassium into the exuvial space with an accompanying passive bulk flow of water.

  3. 3.

    With the approach of ecdysis, the osmotic pressure of molting fluid remained constant, while the concentrations of organic components in molting fluid declined and those in hemolymph were simultaneously enhanced.

  4. 4.

    Differences in the levels of potassium, magnesium, labile phosphate and all organic components were so great as to preclude passive diffusion between molting fluid and hemolymph.

  5. 5.

    Fluid in the pupal midgut lumen appears to be derived primarily from the sloughed larval midgut epithelia and actively transported pigment derived from the larval integument.

  6. 6.

    Chloride, labile phosphate and amino acids were the major anionic components of hemolymph, while for molting fluid, they constituted less than 9% of the anions present.

  7. 7.

    The origins of fluids accumulating in the exuvial space of the cuticle and the lumen of the midgut are different, and both fluids are isolated from hemolymph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, I.: Physiological and biochemical changes during insect development. In: Physiology of the insecta (Rockstein, M. ed.), vol. 1, p. 121–140. New York: Academic Press 1964

    Google Scholar 

  • Bade, M. L., Wyatt, G. R.: Metabolic conversions during pupation of the cecropia silkworm. 1. Deposition and utilization of nutrient reserves. Biochem. J.83, 470–478 (1962)

    Google Scholar 

  • Chen, P. S., Levenbook, L.: Studies on the haemolymph proteins of the blowflyPhormia regina. 1. Changes in ontogenic patterns. J. Insect. Physiol.12, 1595–1609 (1966)

    Google Scholar 

  • Chino, H., Gilbert, L. I.: Lipid release and transport in insects. Biochim. biophys. Acta (Amst.)98, 94–110 (1965)

    Google Scholar 

  • Chinzei, Y., Tojo, S.: Nucleic acid changes in the whole body and several organs of the silkworm,Bombyx mori, during metamorphosis. J. Insect Physiol.18, 1683–1698 (1972)

    Google Scholar 

  • Cottrell, C. B.: Insect ecdysis with particular emphasis on cuticular hardening and darkening. Advanc. Insect Physiol.2, 175–218 (1964)

    Google Scholar 

  • Florkin, M., Jeuniaux, Ch.: Hemolymph: composition. In: Physiology of the insecta (Rockstein M. ed.) vol. Ill, p. 109–152. New York: Academic Press 1964

    Google Scholar 

  • Gilbert, L. I.: Lipid metabolism and function in insects. Advanc. Insect Physiol.4, 69–211 (1967)

    Google Scholar 

  • Goa, J.: A micro-biuret method for protein determination. Determination of total protein in cerebrospinal fluid. Scand. J. clin. Lab. Invest.5, 218–222 (1953)

    Google Scholar 

  • Hackman, R. H.: The integument of arthropoda. In: Chemical zoology (Florkin M. and Scheer B. T. eds.) vol. VI, p. 1–62. New York: Academic Press 1971

    Google Scholar 

  • Jeuniaux, C.: Resorption du liquide exuvial chez le ver á soie (Bombyx mori, L.). Arch. Int. Physiol. Biochem.66, 121–122 (1958).

    Google Scholar 

  • Jungreis, A. M.: Distribution of magnesium in tissues of the silkmothHyalophora cecropia. Amer. J. Physiol.224, 27–30 (1973).

    Google Scholar 

  • Jungreis, A. M.: Formation and composition of molting fluid in the silkmothHyalophora cecropia. Am. Zoologist13, 270A (1973)

    Google Scholar 

  • Jungreis, A. M., Jatlow, P., Wyatt, G. R.: Inorganic ion composition of haemolymph of the cecropia silkmoth: Changes with diet and ontogeny. J. Insect. Physiol.19, 225–233 (1973)

    Google Scholar 

  • Jungreis, A. M., Tojo, S.: Potassium and uric acid content in tissues of the silkmothHyalophora cecropia. Amer. J. Physiol.224, 21–26 (1973).

    Google Scholar 

  • Jungreis, A. M., Wyatt, G. R.: Sugar release and penetration in insect fat body. Relations to regulation of haemolymph trehalose in developing stages ofHyalophora cecropia. Biol. Bull.143, 367–391 (1972)

    Google Scholar 

  • Katzenellenbogen, B. S., Kafatos, F. C.: Inactive proteinases in silkmoth moulting gel. J. Insect Physiol.17, 823–832 (1971a)

    Google Scholar 

  • Katzenellenbogen, B. S., Kafatos, F. C.: Proteinases of silkmoth moulting fluid: Physical and catalytic properties. J. Insect Physiol.17, 775–800 (1971b)

    Google Scholar 

  • Katzenellenbogen, B. S., Kafatos, F. C.: General esterases of silkmoth moulting fluid: Preliminary characterization. J. Insect Physiol.17, 1139–1151 (1971c)

    Google Scholar 

  • Kilby, B. A.: The biochemistry of insect fat body. Advanc. Insect Physiol.1, 111–174 (1963)

    Google Scholar 

  • Layne, E.: Spectrophotometer and turbidometer methods for measuring proteins. In: Methods in enzymology. (Colowick, S. P. and Kaplan, N. D. eds.), vol. III, p. 447–453. New York: Academic Press 1957

    Google Scholar 

  • Lensky, Y., Cohen, C., Schneiderman, H. A.: The origin, distribution and fate of the molting fluid proteins of the cecropia silkworm. Biol. Bull.139, 277–295 (1970)

    Google Scholar 

  • Levenbook, L., Hollis, V. W.: Organic acids in insects. I. Citric acid. J. Insect Physiol.6, 52–61 (1961)

    Google Scholar 

  • Locke, M.: The structure and formation of the integument of insects. In: Physiology of the insecta (Rockstein, M. ed.), vol. III, p. 379–470. New York: Academic Press 1964

    Google Scholar 

  • Locke, M.: The structure and formation of the cuticulin layer in the epicuticle of an insectCalpodes ethlius (Lepidoptera, Hesperiidae). J. Morph.118, 461–494 (1966)

    Google Scholar 

  • Locke, M.: The molt-intermolt cycle in epidermis and other tissues of an insectCalpodes ethlius (Lepidoptera, Hesperiidae). Tissue and Cell2, 197–223 (1970)

    Google Scholar 

  • Lowry, O. H., Roberts, N. R., Leiner, K. Y., Wu, M. L., Farr, A. L.: The quantitative histochemistry of brain. 1. Chemical methods. J. biol. Chem.207, 1–17 (1954)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, J. R.: Protein measurement with the Folin-phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Maddrell, S. H. P.: The mechanisms of insectory systems. Advanc. Insect Physiol.8, 199–331 (1971)

    Google Scholar 

  • Mokrasch, L. C.: Analysis of hexose phosphates and sugar mixtures with anthrone reagent. J. biol. Chem.208, 55–59 (1954)

    Google Scholar 

  • Moore, S., Stein, H. W.: Photometric ninhydrin method for use in the chromatography of amino acids. J. biol. Chem.176, 367–388 (1948)

    Google Scholar 

  • Noble-Nesbitt, J.: Aspects of the structure, formation and function of some insect cuticles. In: Insects and physiology (Beament, J. W. L., and Treherne, J. E. eds.), p. 3–16. London: Oliver and Boyd 1967

    Google Scholar 

  • Passonneau, J. V., Williams, G. M.: The molting fluid of the cecropia silkworm. J. exp. Biol.30, 545–560 (1953)

    Google Scholar 

  • Quatrale, R. P.: Cation concentration changes during development in the silkworm.Hyalophora cecropia (PhD Thesis) Amherst: University of Massachusetts. 187 p. (1966)

    Google Scholar 

  • Shaaya, E., Karlson, P.: Die Ecdysontiter während der Insekten-Entwicklung. II. Die Postembryonale Entwicklung der SchmeißfliegeCalliphora erythrocephala Meig. J. Insect Physiol.11, 65–69 (1965)

    Google Scholar 

  • Shaaya, E., Sekeris, C. E.: Ecdysone during insect development. III. Activities of some enzymes of tyrosine metabolism in comparison with ecdysone titer during the development of the blowfly,Calliphora erythrocephala Meig. Gen. comp. Endocrinol.5, 35–39 (1965)

    Google Scholar 

  • Shaw, J., Stobbart, R. H.: Osmotic and ionic regulation in insects. Advanc. Insect Physiol.1, 315–399 (1963)

    Google Scholar 

  • Speck, U., Urich, K.: Resorption des alten Panzers vor der Häutung bei dem FlußkrebsOrconectes limosus: Schicksal des freigesetzten N-Acetyl-glucosamins. J. comp. Physiol.78, 210–220 (1972)

    Google Scholar 

  • Sutcliffe, D. W.: The composition of hemolymph in aquatic insects. J. exp. Biol.39, 325–343 (1962)

    Google Scholar 

  • Sutcliffe, D. W.: The chemical composition of haemolymph in insects and some other arthropods in relation to their phylogeny. Comp. Biochem. Physiol.9, 121–135 (1963)

    Google Scholar 

  • Tsujita, M., Sukurai, S.: Purification of three specific soluble chromoproteins from chromogranules in hypodermal cells of the silkworm larva. Proc. Japan. Acad.41, 225–229 (1965a)

    Google Scholar 

  • Tsujita, M., Sukurai, S.: Amino acid analysis of three specific chromoproteins purified from chromogranules in hypodermal cells of silkworm larva. Proc. Japan Acad.41, 230–235 (1965b)

    Google Scholar 

  • Verson, E.: Observations on the structure of the exuvial glands and the formation of the exuvial fluid in insects. Zool. Anz.25, 652–654 (1902)

    Google Scholar 

  • Wigglesworth, V. B.: The physiology of the cuticle and of ecdysis inRhodnius prolixus (Triatomidae, Hemiptera) with special reference to the function of oenocytes and of the dermal glands. Quart. J. microsc. Sci.76, 269–318 (1933)

    Google Scholar 

  • Wyatt, G. R.: The biochemistry of insect hemolymph. Ann. Rev. Entom.6, 7–5102 (1961)

    Google Scholar 

  • Wyatt, G. R.: The biochemistry of sugars and polysaccharides in insects. Advanc. Insect Physiol.4, 287–360 (1967)

    Google Scholar 

  • Wyatt, G. R.: Biochemistry of insect metamorphosis. In: Metamorphosis (Etkin W. and Gilbert L. I., eds.), p. 143–184. New York: Appleton-Crofts 1968

    Google Scholar 

  • Wyatt, G. R., Kalf, G.: The chemistry of insect hemolymph. II. Trehalose and other carbohydrates. J. gen. Physiol.40, 833–847 (1957)

    Google Scholar 

  • Wyatt, G. R., Kropf, R. B., Carey, F. G.: The chemistry of insect hemolymph. IV. Acid-soluble phosphates. J. Insect Physiol.9, 137–152 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by grants from the National Institutes of Health, U.S. Public Health Service (HD-00032) and from the Ohio University Research Committee (No. 410). During the tenure of this work, AMJ was partially supported by Training Grant HD-00032 from the Institute of Child Health and Human Development. The technical assistance of Mrs. Winnifred Breau is gratefully appreciated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungreis, A.M. Physiology and composition of molting fluid and midgut lumenal contents in the silkmothHyalophora cecropia . J. Comp. Physiol. 88, 113–127 (1974). https://doi.org/10.1007/BF00695403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695403

Keywords

Navigation