Skip to main content
Log in

Morphology, ultrastructure, and chemical compounds of the osmeterium of Heraclides thoas (Lepidoptera: Papilionidae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The osmeterium, found in papilionoid larvae, is an eversible organ with an exocrine gland that produces substances in response to the mechanical disturbances caused by natural enemies. The anatomy, histology and ultrastructure of the osmeterium, and the chemical composition of its secretion in Heraclides thoas (Lepidoptera: Papilionidae) were studied. Heraclides thoas larvae have a Y-shaped osmeterium in the thorax. The surface of the osmeterium has a rough cuticle lining cells with papillae and irregular folds, whereas the cells that limited the gland pores are irregular, folded, and devoid of papillae. Two types of cells are found: (i) cuticular epidermal cells on the surface of the tubular arms of the osmeterium and (ii) secretory cells of the ellipsoid gland within the region of the glandular pore. Cuticular epidermal cells show a thick cuticle, with several layers divided into epicuticle and lamellar endocuticle. Secretory cells are polygonal, with extensive folds in the basal plasma membrane that formed extracellular channels. The cytoplasm has mitochondria, ribosomes, and numerous vacuoles, whereas the nucleus is irregular in shape with decondensed chromatin. The chemical composition of the osmeterial secretion comprised (Z)-α-bisabolene (25.4%), α-bisabol (20.6%), β-bisabolene (13.1%), (E)-α-bisabolene 8%), β-pinene (9.91%), longipinene epoxide (8.92%), (Z)-β-farnesene (6.96%), β-caryophyllene (2.05%), farnesol (1.86%), linalyl propionate (1.86%), and 1-octyn-4-ol (1.07%). The morphological features suggest that the cuticular epidermal cells play a major role in the maintenance and protection of the osmeterium, whereas secretory cells are responsible for production of osmeterial secretions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Andersen SO, Hojrup P, Roepstorff P (1995) Insect cuticular proteins. Insect Biochem Mol Biol 25:153–176

    Article  CAS  Google Scholar 

  • Andersen SO, Peter MG, Roepstorff P (1996) Cuticular sclerotization in insects. Comp Biochem Physiol B Biochem Mol Biol 113:689–705

    Article  Google Scholar 

  • Berenbaum MR, Moreno B, Green E (1992) Soldier bug predation on swallowtail butterfly caterpillars (Lepidoptera: Papilionidae): circumvention of defensive chemistry. J Insect Behav 5:547–553

    Article  Google Scholar 

  • Bernays EA (1989) Host range in phytophagous insects: the potential role of generalist predators. Evol Ecol 3:299–311

    Article  Google Scholar 

  • Burger BV, Munro Z, Röth M, Spies HSC, Truter V, Geertsema H, Habich A (1985) Constituents of osmeterial secretion of pre-final instar larvae of citrus swallowtail, Papilio demodocus (Esper) (Lepidoptera: Papilionidae). J Chem Ecol 11:1093–1113

    Article  CAS  Google Scholar 

  • Bruschini C, Cervo R (2011) Venom volatiles of the paper wasp social parasite Polistes sulcifer elicit intra-colonial aggression on the nest of the host species Polistes dominulus. Insect Soc 58:383–390

    Article  Google Scholar 

  • Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583:1736–1743

    Article  CAS  Google Scholar 

  • Chapman RF (2013) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Chattopadhyay J (2011) The structure and defensive efficacy of glandular secretion of the larval osmeterium in Graphium agamemnon agamemnon Linnaeus, 1758 (Lepidoptera: Papilionidae). Turk J Zool 35:245–254

    Google Scholar 

  • Cornell JC, Stamp NE, Bowers MD (1987) Developmental change in aggregation, defense and escape behavior of buckmoth caterpillars, Hemileuca lucina (Saturniidae). Behav Ecol Sociobiol 20:383–388

    Article  Google Scholar 

  • Crossley AC, Waterhouse DF (1969) The ultrastructure of the osmeterium and the nature of its secretion in Papilio larvae (Lepidoptera). Tissue Cell 1:525–554

    Article  CAS  Google Scholar 

  • Damman H (1986) The osmaterial glands of the swallowtail butterfly Eurytides marcellus as a defense against natural enemies. Ecol Entomol 11:261–265

    Article  Google Scholar 

  • Darling DC, Schroeder FC, Meinwald J, Eisner M, Eisner T (2001) Production of a cyanogenic secretion by a thyridid caterpillar (Calindoea trifascialis, Thyrididae, Lepidoptera). Naturwissenschaften 88:306–309

    Article  CAS  Google Scholar 

  • DeVries PJ (1988) The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool J Linnean Soc 94:379–393

    Article  Google Scholar 

  • DeVries PJ (1991) Foam barriers, a new defense against ants for milkweed butterfly caterpillars (Nymphalidae: Danainae). J Res Lep 30:261–266

    Google Scholar 

  • Dyer LA (1997) Effectiveness of caterpillar defenses against three species of invertebrate predators. J Res Lep 35:1–16

    Google Scholar 

  • Eisner T, Kluge AF, Ikeda MI, Meinwald YC, Meinwald J (1971) Sesquiterpenes in the osmeterial secretion of a papilionid butterfly, Battus polydamas. J Insect Physiol 17:245–250

    Article  CAS  Google Scholar 

  • Frankfater C, Tellez MR, Slattery M (2009) The scent of alarm: ontogenetic and genetic variation in the osmeterial gland chemistry of Papilio glaucus (Papilionidae) caterpillars. Chemoecology 19:81–96

    Article  CAS  Google Scholar 

  • Gentry GL, Dyer LA (2002) On the conditional, nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Article  Google Scholar 

  • Graça MBCS, Nunes-gutjahr AL (2014) Immature stages of Heraclides thoas thoas (Linnaeus, 1771) (Lepidoptera: Papilionidae): biology and morphology. Bol Mus Paraense Emílio Goeldi Ciênc Nat 9:519–531

    Article  Google Scholar 

  • Gross P (1993) Insect behavioral and morphological defenses. Annu Rev Entomol 38:251–273

    Article  Google Scholar 

  • Hallberg E, Poppy G (2003) Exocrine glands: chemical communication and chemical defense. In: Kristensen NP (ed) Handbuch der Zoologie, 4(36): Lepidoptera, Moths and Butterflies, Part 2. De Gruyter, Berlin, pp 361–375

    Google Scholar 

  • Harvey JA, Bezemer TM, Gols R, Nakamatsu Y, Tanaka T (2008) Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol Entomol 33:217–225

    Article  Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Helenius A, Mellman I, Wall D, Hubbard A (1983) Endosomes. Trends Biochem Sci 8:245–250

    Article  CAS  Google Scholar 

  • Honda K (1980) Osmeterial secretions of papilionid larvae in the genera Luehdorfia, Graphium and Atrophaneura (Lepidoptera). Insect Biochem 10:583–588

    Article  CAS  Google Scholar 

  • Honda K (1983) Evidence for de novo biosynthesis of osmeterial secretions in young larvae of the swallowtail butterflies (Papilio): deuterium incorporation in vivo into sesquiterpene hydrocarbons as revealed by mass spectrometry. Int J Trop Insect Sci 4:255–261

    Article  CAS  Google Scholar 

  • Honda K (1990) GC-MS and 13C-NMR studies on the biosynthesis of terpenoid defensive secretions by the larvae of papilionid butterflies (Luehdorfia and Papilio). Insect Biochem 20:245–250

    Article  CAS  Google Scholar 

  • Honda K, Hayashi N (1995) Chemical nature of larval osmeterial secretions of papilionid butterflies in the genera Parnassius, Sericinus and Pachliopta. J Chem Ecol 21:859–867

    Article  CAS  Google Scholar 

  • Jansen WF, Diederen JHB, Dorland M, Langermans J, Meesen BPM, Mink K, Vullings HGB (1989) Ultrastructural enzyme-cytochemical study of the intrinsic glandular cells in the corpus cardiacum of Locusta migratoria: relation to the secretory and endocytotic pathways, and to the lysosomal system. Cell Tissue Res 255:167–178

    Article  Google Scholar 

  • Leslie AJ, Berenbaum MR (1990) Role of the osmeterial gland in swallowtail larvae (Papilionidae) in defense against an avian predator. J Lepid Soc 44:245–251

    Google Scholar 

  • Lu CC, Chow YS (1991) Fine structure of the larval osmeterium of Papilio demoleus libanius (Lepidoptera: Papilionidae). Ann Entomol Soc Am 8:294–302

    Article  Google Scholar 

  • Marti OG, Rogers CE (1988) Anatomy of the ventral eversible gland of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), larvae. Ann Entomol Soc Am 81:308–317

    Article  Google Scholar 

  • Martínez LC, Fialho MCQ, Zanuncio JC, Serrão JE (2014) Ultrastructure and cytochemistry of salivar glands of the predator Podisus nigrispinus (Hemiptera: Pentatomidae). Protoplasma 251:535–543

    PubMed  Google Scholar 

  • Martínez LC, Fialho MCQ, Barbosa LCA, Oliveira LL, Zanuncio JC, Serrão JE (2016) Stink bug predator kill prey with salivary non-proteinaceous compounds. Insect Biochem Mol Biol 68:71–78

    Article  Google Scholar 

  • Martínez LC, Plata-Rueda A, Zanuncio JC, de Souza TW, Serrão JE (2017) Comparative morphology of the odoriferous system in three predatory stink bugs (Heteroptera: Asopinae). Protoplasma 254:1965–1972

    Article  Google Scholar 

  • Moors L, JohaBillen J (2009) Age-dependent morphology and ultrastructure of the cornua glands in drones of Apis mellifera. Apidologie 40:600–607

    Article  Google Scholar 

  • Murphy SM, Leahy SM, Williams LS, Lill JT (2010) Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. Behav Ecol 21:153–160

    Article  Google Scholar 

  • Nishida R (1995) Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5(6):127–138

    Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  Google Scholar 

  • Noirot C, Quennedey A (1991) Glands, gland cells, glandular units; some comments on terminology and classification. Ann Soc Entomol Fr 27:123–128

    Google Scholar 

  • Ômura H, Honda K, Feeny P (2006) From terpenoids to aliphalic acids: further evidence for late-instar switch in osmeterial defense as a characteristic trait of swallowtail butterflies in the tribe Papilionini. J Chem Ecol 32:1999–2012

    Article  Google Scholar 

  • Opitz SE, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–2012

    Article  CAS  Google Scholar 

  • Riparbelli MG, Callaini G, Dallai R (1994) Cytoskeleton of larval and adult salivary glands of the dipteran Ceratitis capitata. Implication of microfilaments and microtubules in saliva discharge. Ital J Zool 61:9–17

    Google Scholar 

  • Rossini C, Attygalle AB, Gonzalez A, Smedley SR, Eisner M, Meinwald J, Eisner T (1997) Defensive production of formic acid (80-percent) by a carabid beetle (Galerita lecontei). Proc Natl Acad Sci U S A 94:6792–6797

    Article  CAS  Google Scholar 

  • Salgado-Neto G (2010) Lepidópteros do Brasil (agenda de campo). Rede de Inovação Tecnológica para Defesa Agropecuária, pp. 1–83. Viçosa

  • Schmidt JO (1982) Biochemistry of insect venoms. Annu Rev Entomol 27:339–368

    Article  CAS  Google Scholar 

  • Seligman IM, Doy FA (1973) Biosynthesis of defensive secretions in Papilio aegeus. Insect Biochem 3:205–215

    Article  CAS  Google Scholar 

  • Staddon BW (1979) The scent glands of Heteroptera. Adv Insect Physiol 14:351–418

    Article  CAS  Google Scholar 

  • Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  CAS  Google Scholar 

  • Tyler HA, Brown KS Jr, Wilson KH (1994) Swallowtail butterflies of the Americas: a study in biological dynamics, ecological diversity, biosystematics, and conservation: 1–376. Scientific Publishers, Gainesville

    Google Scholar 

  • Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57:187–204

    Article  CAS  Google Scholar 

  • Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199

    Article  Google Scholar 

  • Wegener M (1926) Die Nackengabel von Zerynthia (Thais) polyxena Schiff. Und die phylogenese des osmateriums. Z Morphol O¨ kol Tiere 5:155–206

    Article  Google Scholar 

  • Young AM, Blum MS, Fales HM, Bian Z (1986) Natural history and ecological chemistry of the neotropical butterfly Papilio anchisiades (Papilionidae). J Lepidop Soc 40:36–53

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Núcleo de Microscopia e Microanálise da Universidade Federal de Viçosa for technical assistance and to Phillip Villani for the English review.

Funding

This study was funded by Brazilian research agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (grant number 305165/2013-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES (grant number 2815/11), and Fundação de Amparo a Pesquisa do Estado de Minas Gerais FAPEMIG (grant number APQ-01079-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Carlos Martínez.

Ethics declarations

Conflict of interest

Luis Carlos Martinez declares that he has no conflict of interest. Angelica Plata-Rueda declares that she has no conflict of interest. Guilherme da Silva Neves declares that he has no conflict of interest. Jamile Fernanda Cossolin declares that she has no conflict of interest. Marcelo Henrique dos Santos declares that he has no conflict of interest. José Cola Zanuncio declares that he has no conflict of interest. José Eduardo Serrão declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with animals and human participants performed by any of the authors.

Ethical statement

This article does not contain any studies with animals and human participants performed by any of the authors.

Additional information

Handling Editor: Margit Pavelka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, L.C., Plata-Rueda, A., da Silva Neves, G. et al. Morphology, ultrastructure, and chemical compounds of the osmeterium of Heraclides thoas (Lepidoptera: Papilionidae). Protoplasma 255, 1693–1702 (2018). https://doi.org/10.1007/s00709-018-1261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1261-x

Keywords

Navigation