Skip to main content
Log in

Neural integration in the first optic neuropile of dragonflies

II. Receptor signal interactions in the lamina

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Positive potentials with the waveform of a smoothed retinula receptor potential are recorded from dragonfly lamina. All potentials of this type are calledlamina positive potentials, unless their origin is certain. To establish their origin and to see how information is processed in the lamina their sensitivity characteristics are examined in detail and compared with retinula cell somata.

  2. 2.

    By comparing response noise at low intensities (discrete potentials), polarised light sensitivity, angular sensitivity, spectral sensitivity (Fig. 1) and intensity/ response functions it becomes clear that not all lamina positive potentials originate from retinula cell axons. The potentials are divided into two groups,axon responses andlamina depolarisationa.

  3. 3.

    Axon responses have sensitivities and characteristics that resemble closely retinula cell somata (Fig. 2, 3, 5). In some cases recordings are correlated with a definite resting potential. It is concluded that axon responses probably originate intracellularly from retinula axons in the lamina. Some axon responses show small light induced action potentials (Fig. 6).

  4. 4.

    Lamina depolarisations show the properties of a summed response from several retinula cell somata, i.e. high signal:noise ratio at low intensities, no polarised light sensitivity (Fig. 1), broad or distorted spectral sensitivities (Fig. 4). On the basis of this evidence, together with their broader angular sensitivity functions and unique intensity/response functions (Figs. 2, 3) it is proposed that lamina depolarisations are extracellular in origin.

  5. 5.

    Previous studies also suggest an extracellular origin for the lamina depolarisation. It is concluded that this extracellular signal may act as a negative feed-back within the lamina.

  6. 6.

    No pre-synaptic summation of retinula axon signals can be found in dragonfly lamina. Voltage amplification and improved signal: noise ratio result from a summation of inputs upon second order neurons. The unique individual properties of retinula cells are maintained in the lamina and they may function as inputs to other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, D. W.: Spatial and temporal integration properties of units in the first optic ganglion of Dipterans. J. Neurophysiol.35, 429–444 (1972)

    Google Scholar 

  • Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol.60, 450–477 (1968)

    Google Scholar 

  • Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a single monopolar neuron in the ganglion opticum I of the blowflyCalliphora. Z. vergl. Physiol.70, 414–424 (1970)

    Google Scholar 

  • Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)

    Google Scholar 

  • Behrens, M. E., Wulff, V. J.: Light-initiated responses of retinula and eccentric cells in theLimulus lateral eye. J. gen. Physiol.48, 1081–1093 (1965)

    Google Scholar 

  • Boschek, C. B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Z. Zellforsch.118, 369–409 (1971)

    Google Scholar 

  • Bruckmoser, P.: Die spektrale Empfindlichkeit einzelner Sehzellen des RückenschwimmersNotonecta glauca L. (Heteroptera). Z. vergl. Physiol.59, 187–204 (1968)

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol.16, 86–109 (1962)

    Google Scholar 

  • Fulpius, B., Baumann, F.: Effects of sodium, potassium and calcium ions on slow and spike potentials in single photoreceptor cells. J. gen. Physiol.53, 541–561 (1969)

    Google Scholar 

  • Furukawa, T., Furshpan, E. J.: Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophysiol.26, 140–176 (1963)

    Google Scholar 

  • Gemperlein, R., Smola, U.: Übertragungseigenschaften der Sehzelle der Schmeiss- fliegeCattiphora erythrocephala. 3. Verbesserung des Signal-Störunge-Verhältnisses durch präsynaptische Summation in der Lamina ganglionaris. J. comp. Physiol.79, 393–410 (1972)

    Google Scholar 

  • Heisenberg, M.: Separation of receptor and lamina potentials in the electroretinogram of normal and mutantDrosophila. J. exp. Biol.55, 85–100 (1971)

    Google Scholar 

  • Horridge, G. A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol.62, 1–37 (1969)

    Google Scholar 

  • Horridge, G. A., Meinertzhagen, I. A.: The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. vergl. Physiol.66, 369–378 (1970)

    Google Scholar 

  • Ioannides, A. C.: Light adaptation and signal transmission in the compound eye of the giant water bugLethocerus (Belastomatidae: Hemiptera). Ph. D. Thesis, Australian National University 1972

  • Ioannides, A. C., Walcott, B.: Graded illumination potentials from retinula cell axons in the bugLethocerus. Z. vergl. Physiol.71, 315–325 (1971)

    Google Scholar 

  • Järvilehto, M., Zettler, F.: Micro-localisation of lamina located visual cell activities in the compound eye of the blowflyCalliphora. Z. vergl. Physiol.69, 134–138 (1970)

    Google Scholar 

  • Kirschfeld, K.: Discrete and graded potentials in the compound eye of the flyMusca. In: The functional organisation of the compound eye, C. G. Bernhard, ed., pp. 291–307. Oxford: Pergamon Press 1966

    Google Scholar 

  • Langer, H., Thoreil, B.: Microspectrophotometry assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organisation of the compound eye, C. G. Bernhard, ed. Oxford: Pergamon Press 1966

    Google Scholar 

  • Laughlin, S. B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)

    Google Scholar 

  • Laughlin, S. B.: The function of the lamina ganglionaris. In: The compound eye and vision of insects, G. A. Horridge, ed. Oxford: University Press 1974a

    Google Scholar 

  • Laughlin, S. B., Horridge, G. A.: Angular sensitivity of the retinula cells of dark- adapted worker bee. Z. vergl. Physiol.74, 329–335 (1971)

    Google Scholar 

  • Leutscher-Hazelhoff, J. T., Kuiper, J. W.: Responses of the blowfly (Calliphora erythrocephala) to light flashes and to sinusoidal modulated light. Docum. opthal. (Den Haag)18, 275–283 (1964)

    Google Scholar 

  • McCann, G. D., Arnett, D. W.: Spectral and polarisation sensitivity of the Dipteran visual system. J. gen. Physiol.59, 534–558 (1972)

    Google Scholar 

  • Mote, M. I.: Focal recording of responses evoked by light in the lamina ganglionaris of the flySarcophaga bullata. J. exp. Zool.175, 149–158 (1970a)

    Google Scholar 

  • Mote, M. I.: Electrical correlates of neural superposition in the eye of the flySarcophaga bullata. J. exp. Zool.175, 159–168 (1970b)

    Google Scholar 

  • Rehbronn, W.: Gleichzeitige intracelluläre Doppelableitungen aus dem Komplexauge vonCalliphora erythrocephala. Z. vergl. Physiol.76, 285–301 (1972)

    Google Scholar 

  • Scholes, J. H.: The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik6, 149–162 (1969)

    Google Scholar 

  • Shaw, S. R.: Organisation of the locust retina. Symp. zool. soc. Lond.23, 135–163 (1968)

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in the ommatidia of the drone honeybee and locust compound eyes. Vision Res.9, 999–1030 (1969)

    Google Scholar 

  • Smola, U., Gemperlein, R.: Übertragungseigensohaften der Sehzelle der Schmeiss- fliegeCalliphora erythrocephala. 2. Die Abhängigkeit vom Ableitort: Retina- Lamina ganglionaris. Z. vergl. Physiol.79, 363–392 (1972)

    Google Scholar 

  • Snyder, A.W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organisation of the intermediate retina of Dipterans. J. Ultrastruct. Res.13, 1–33 (1965)

    Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Compound eye of Dipterans: anatomical basis for integration—an electron microscope study. J. Ultrastruct. Res.16, 395–398 (1966)

    Google Scholar 

  • Washizu, Y.: Electrical activity of single retinula cells in the compound eye of the blowflyCalliphora erythrocephala Meig. comp. Biochem. Physiol.12, 369–387 (1964)

    Google Scholar 

  • Zettler, F., Järvilehto, M.: Active and passive axonal propagation of nonspike signals in the retina ofCalliphora. J. comp. Physiol.85, 89–104 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laughlin, S.B. Neural integration in the first optic neuropile of dragonflies. J. Comp. Physiol. 92, 357–375 (1974). https://doi.org/10.1007/BF00694707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694707

Keywords

Navigation