Skip to main content
Log in

Conditionality of circadian rhythmicity: Synergistic action of light and temperature

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

With cells which have been grown at 20°C, the circadian rhythm of bioluminescence inGonyaulax polyedra disappears at a critical temperature, which is about 12°C. The transition from the rhythmic to the arrhythmic state is very sharp with temperature: the two states are separated by only 1–2°C. Following a return to a higher temperature (20°C) under otherwise constant conditions, the rhythm resumes with its new phase defined by the time of the cool to warm transition. Loss of rhythmicity also occurs in constant bright light, with a similar resumption and phase determination upon transfer to darkness. The experiments described here show that the effects of light and low temperature are additive: rhythmicity is lost under combined low temperature and light intensity treatments which are ineffective individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

circadian time

ft-c:

footcandle

LD 12:12:

12 h light/12 h dark cycle

References

  • Ball, N.G., Dyke, I.J.: The effects of decapitation, lack of oxygen, and low temperature on the endogenous 24 h rhythm in the growth-rate ofAvena coleoptile. J. Exp. Bot.8, 323–338 (1957)

    Google Scholar 

  • Bruce, V.G.: Environmental entrainment of circadian rhythms. Cold Spring Harbor Symp. Quant. Biol.25, 29–48 (1960)

    Google Scholar 

  • Bünning, E.: The physiological clock, 3rd English ed., pp. 258. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Eckert, R.: Excitation and luminescence inNoctiluca miliaris. In: Bioluminescence in progress (eds. F.H. Johnson, Y. Haneda), pp. 269–300. Princeton: Princeton Univ. Press 1966

    Google Scholar 

  • Fogel, M., Hastings, J.W.: A substrate binding molecule in theGonyaulax bioluminescence reaction. Arch. Biochem. Biophys.142, 310–321 (1971)

    Google Scholar 

  • Hastings, J.W.: Biochemical aspects of rhythms: Phase shifting by chemicals. Cold Spring Harbor Symp. Quant. Biol.25, 131–144 (1960)

    Google Scholar 

  • Hastings, J.W.: The role of light in persistent daily rhythms. In: Photophysiology: Action of light on living materials, Vol. 1 (ed. A.C. Giese), pp. 333–361. New York: Academic Press 1964

    Google Scholar 

  • Hastings, J.W.: Are circadian rhythms conditional? Int. J. Chronobiol.1, 329 (1973)

    Google Scholar 

  • Hastings, J.W., Bode, V.C.: Biochemistry of rhythmic systems. Ann. New York Acad. Sci.98, 876–889 (1962)

    Google Scholar 

  • Hastings, J.W., Sweeney, B.M.: On the mechanism of temperature independence in a biological clock. Proc. Nat. Acad. Sci.43, 804–811 (1957)

    Google Scholar 

  • Hastings, J.W., Sweeney, B.M.: A persistent diurnal rhythm of luminescence inGonyaulax polyedra. Biol. Bull.115, 440–458 (1958)

    Google Scholar 

  • Hesse, M.: Der Einfluß niedriger Temperatur auf die endogene Rhythmik der Reproduktionsfähigkeit vonChlorella. Z. Pflanzenphysiol.71, 428–436 (1974)

    Google Scholar 

  • Johnsson, A., Karlsson, H.G.: A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J. Thoer. Biol.36, 153–174 (1972)

    Google Scholar 

  • McDaniel, M., Sulzman, F.M., Hastings, J.W.: Heavy water slows theGonyaulax clock: A test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature. Proc. Nat. Acad. Sci.71, 4389–4391 (1974)

    Google Scholar 

  • McMurry, L.M.: Studies on properties and biochemistry of circadian rhythms in the bioluminescent dinoflagellate,Gonyaulax polyedra. Ph.D. thesis, Harvard University, Cambridge, Massachusetts 1971

    Google Scholar 

  • Njus, D.: The control of bioluminescence inGonyaulax polyedra. Ph.D. thesis, Harvard University, Cambridge, Massachusetts 1975

    Google Scholar 

  • Njus, D., Gooch, V.D., Mergenhagen, D., Sulzman, F., Hastings, J.W.: Membranes and molecules in circadian systems. Fed. Proc.35, 2353–2357 (1976)

    Google Scholar 

  • Njus, D., Sulzman, F.M., Hastings, J.W.: Membrane model for the circadian clock. Nature248, 116–120 (1974)

    Google Scholar 

  • Pittendrigh, C.S.: On temperature independence in the clock-system controlling emergence time inDrosophila. Proc. Nat. Acad. Sci.40, 1018–1029 (1954)

    Google Scholar 

  • Pittendrigh, C.S.: Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol.25, 159–184 (1960)

    Google Scholar 

  • Pittendrigh, C.S.: On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Circadian clocks (ed. J. Aschoff), pp. 277–297. Amsterdam: North-Holland 1965

    Google Scholar 

  • Pittendrigh, C.S.: Circadian oscillations in cells and the circadian organization of multicellular systems. In: The neurosciences: Third study program (eds. F.O. Schmitt, F.G. Worden), pp. 437–458. Cambridge, Mass.: M.I.T. Press 1974

    Google Scholar 

  • Pittendrigh, C.S.: Circadian clocks: What are they? In: The molecular basis of circadian rhythms (eds. J.W. Hastings, H.-G. Schweiger), pp. 11–48. Berlin: Abakon Verlagsgesellschaft 1976

    Google Scholar 

  • Roberts, S.K. deF.: Circadian activity rhythms in cockroaches. II. Entrainment and phase shifting. J. Cell. Comp. Physiol.59, 175–186 (1962)

    Google Scholar 

  • Sweeney, B.M., Hastings, J.W.: Characteristics of the diurnal rhythm of luminescence inGonyaulax polyedra. J. Cell. Comp. Physiol.49, 115–128 (1957)

    Google Scholar 

  • Sweeney, B.M., Hastings, J.W.: Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symp. Quant. Biol.25, 87–104 (1960)

    Google Scholar 

  • Wagner, E.: Der Einfluß niedriger Temperatur auf die Phasenlage der endogen-tagesperiodischen Blattbewegungen vonPhaseolus multiflorus. Z. Bot.51, 179–204 (1963)

    Google Scholar 

  • Winfree, A.T.: Integrated view of resetting a circadian clock. J. Theoret. Biol.28, 327–374 (1970)

    Google Scholar 

  • Winfree, A.T.: Corkscrews and singularities in fruitflies: Resetting behavior of the circadian eclosion rhythm. In: Biochronometry (ed. M. Menaker), pp. 81–109. Washington: National Academy of Sciences 1971

    Google Scholar 

  • Winfree, A.T.: On phase resetting in multicellular clockshops. In: The molecular basis of circadian rhythms (eds. J.W. Hastings, H.-G. Schweiger), pp. 109–129. Berlin: Abakon Verlagsgesellschaft 1976

    Google Scholar 

  • Zimmerman, W.F.: On the absence of circadian rhythmicity inDrosophila pseudoobscura pupae. Biol. Bull.136, 494–500 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NIH Predoctoral Trainee in Biophysics, 2 T01 GM00782-16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Njus, D., McMurry, L. & Hastings, J.W. Conditionality of circadian rhythmicity: Synergistic action of light and temperature. J Comp Physiol B 117, 335–344 (1977). https://doi.org/10.1007/BF00691559

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691559

Keywords

Navigation