Skip to main content

The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

Since its introduction in 1993, the GAL4 system has become an essential part of the Drosophila geneticist’s toolkit. Widely used to drive gene expression in a multitude of cell- and tissue-specific patterns, the system has been adapted and extended to form the basis of many modern tools for the manipulation of gene expression in Drosophila and other model organisms.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6371-3_22

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6371-3_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  2. Ma J, Przibilla E, Hu J et al (1988) Yeast activators stimulate plant gene expression. Nature 334:631–633. doi:10.1038/334631a0

    Article  CAS  PubMed  Google Scholar 

  3. Webster N, Jin JR, Green S et al (1988) The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52:169–178

    Article  CAS  PubMed  Google Scholar 

  4. Kakidani H, Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52:161–167

    Article  CAS  PubMed  Google Scholar 

  5. Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856. doi:10.1038/332853a0

    Article  CAS  PubMed  Google Scholar 

  6. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A 84:9123–9127

    Article  PubMed  PubMed Central  Google Scholar 

  7. Struhl G (1985) Near-reciprocal phenotypes caused by inactivation or indiscriminate expression of the Drosophila segmentation gene ftz. Nature 318:677–680

    Article  CAS  PubMed  Google Scholar 

  8. Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93:12418–12422

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bellen HJ, Levis RW, Liao G et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781. doi:10.1534/genetics.104.026427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mummery-Widmer JL, Yamazaki M, Stoeger T et al (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992. doi:10.1038/nature07936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saini N, Reichert H (2012) Neural stem cells in Drosophila: molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells Int 2012:486169. doi:10.1155/2012/486169

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guarente L, Yocum RR, Gifford P (1982) A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A 79:7410–7414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774

    Article  CAS  PubMed  Google Scholar 

  14. Baleja JD, Marmorstein R, Harrison SC, Wagner G (1992) Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature 356:450–453. doi:10.1038/356450a0

    Article  CAS  PubMed  Google Scholar 

  15. Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414. doi:10.1038/356408a0

    Article  CAS  PubMed  Google Scholar 

  16. Kakidani H, Leatherwood J, Mostashari F, Ptashne M (1989) An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol 209:423–432

    Article  PubMed  Google Scholar 

  17. Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699–704

    Article  CAS  PubMed  Google Scholar 

  18. Johnston M (1987) Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature 328:353–355. doi:10.1038/328353a0

    Article  CAS  PubMed  Google Scholar 

  19. Silver PA, Keegan LP, Ptashne M (1984) Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc Natl Acad Sci U S A 81:5951–5955. doi:10.1016/j.ymeth.2015.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853

    Article  CAS  PubMed  Google Scholar 

  21. Bhaumik SR, Raha T, Aiello DP, Green MR (2004) In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev 18:333–343. doi:10.1101/gad.1148404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin L, Chamberlain L, Zhu LJ, Green MR (2012) Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4. Proc Natl Acad Sci U S A 109:1997–2002. doi:10.1073/pnas.1116340109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80:153–158

    Article  CAS  PubMed  Google Scholar 

  24. Yang MY, Armstrong JD, Vilinsky I et al (1995) Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15:45–54

    Article  PubMed  Google Scholar 

  25. Manseau L, Baradaran A, Brower D et al (1997) GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 209:310–322. doi:10.1002/(SICI)1097-0177(199707)209:3<310::AID-AJA6>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi S, Ito K, Sado Y et al (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34:58–61. doi:10.1002/gene.10137

    Article  CAS  PubMed  Google Scholar 

  27. Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720. doi:10.1073/pnas.0803697105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jenett A, Rubin GM, Ngo T-TB et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001. doi:10.1016/j.celrep.2012.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manning L, Heckscher ES, Purice MD et al (2012) A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2:1002–1013. doi:10.1016/j.celrep.2012.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jory A, Estella C, Giorgianni MW et al (2012) A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2:1014–1024. doi:10.1016/j.celrep.2012.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H-H, Kroll JR, Lennox SM et al (2014) A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep. doi:10.1016/j.celrep.2014.06.065

    Google Scholar 

  32. Smale ST, Baltimore D (1989) The “initiator” as a transcription control element. Cell 57:103–113

    Article  CAS  PubMed  Google Scholar 

  33. Lim CY, Santoso B, Boulay T et al (2004) The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev 18:1606–1617. doi:10.1101/gad.1193404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burke TW, Kadonaga JT (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 10:711–724

    Article  CAS  PubMed  Google Scholar 

  35. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Markstein M, Pitsouli C, Villalta C et al (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476–483. doi:10.1038/ng.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bischof J, Bischof J, Maeda RK et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317. doi:10.1073/pnas.0611511104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfeiffer BD, Ngo T-TB, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755. doi:10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rørth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78:113–118

    Article  PubMed  Google Scholar 

  40. Bischof J, Björklund M, Furger E et al (2013) A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140:2434–2442. doi:10.1242/dev.088757

    Article  CAS  PubMed  Google Scholar 

  41. Bischof J, Sheils EM, Björklund M, Basler K (2014) Generation of a transgenic ORFeome library in Drosophila. Nat Protoc 9:1607–1620. doi:10.1038/nprot.2014.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nogi Y, Shimada H, Matsuzaki Y et al (1984) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. II. The isolation and dosage effect of the regulatory gene GAL80. Mol Gen Genet 195:29–34

    Article  CAS  PubMed  Google Scholar 

  43. Ma J, Ptashne M (1987) The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142

    Article  CAS  PubMed  Google Scholar 

  44. Suster ML, Seugnet L, Bate M, Sokolowski MB (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39:240–245. doi:10.1002/gene.20051

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto K, Toh-e A, Oshima Y (1978) Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4. J Bacteriol 134:446–457

    CAS  PubMed  PubMed Central  Google Scholar 

  46. McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768. doi:10.1126/science.1089035

    Article  CAS  PubMed  Google Scholar 

  47. McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004:pl6. doi: 10.1126/stke.2202004pl6

    Google Scholar 

  48. Mondal K, Dastidar AG, Singh G et al (2007) Design and isolation of temperature-sensitive mutants of Gal4 in yeast and Drosophila. J Mol Biol 370:939–950. doi:10.1016/j.jmb.2007.05.035

    Article  CAS  PubMed  Google Scholar 

  49. Han DD, Stein D, Stevens LM (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127:573–583

    CAS  PubMed  Google Scholar 

  50. Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A 98:12596–12601. doi:10.1073/pnas.221303298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roman G, Endo K, Zong L, Davis RL (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:12602–12607. doi:10.1073/pnas.221303998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burcin MM, Schiedner G, Kochanek S et al (1999) Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci U S A 96:355–360. doi:10.1073/pnas.96.2.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nicholson L, Singh GK, Osterwalder T et al (2008) Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics 178:215–234. doi:10.1534/genetics.107.081968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436. doi:10.1016/j.neuron.2006.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aso Y, Hattori D, Yu Y et al (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. Elife. doi:10.7554/eLife.04577

    Google Scholar 

  56. Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40:795–803

    Article  CAS  PubMed  Google Scholar 

  57. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  PubMed  Google Scholar 

  58. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72(4):527–540

    Article  CAS  PubMed  Google Scholar 

  59. Ito K, Awano W, Suzuki K et al (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    CAS  PubMed  Google Scholar 

  60. Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214. doi:10.1038/368208a0

    Article  CAS  PubMed  Google Scholar 

  61. Jiang H, Patel PH, Kohlmaier A et al (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355. doi:10.1016/j.cell.2009.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bosch JA, Tran NH, Hariharan IK (2015) CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila. Development 142:597–606. doi:10.1242/dev.114603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  64. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  PubMed  Google Scholar 

  65. Yu H-H, Chen C-H, Shi L et al (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953. doi:10.1038/nn.2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griffin R, Sustar A, Bonvin M et al (2009) The twin spot generator for differential Drosophila lineage analysis. Nat Methods 6:600–602. doi:10.1038/nmeth.1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zong H, Espinosa JS, Su HH et al (2005) Mosaic analysis with double markers in mice. Cell 121:479–492. doi:10.1016/j.cell.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  68. Brand AH, Manoukian AS, Perrimon N (1994) Ectopic expression in Drosophila. Methods Cell Biol 44:635–654

    Article  CAS  PubMed  Google Scholar 

  69. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi:10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  70. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  73. Gratz SJ, Wildonger J, Harrison MM, O’Connor-Giles KM (2013) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 7(4):249–255

    Article  CAS  Google Scholar 

  74. Bassett AR, Tibbit C, Ponting CP, Liu J-L (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228. doi:10.1016/j.celrep.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156. doi:10.1038/nature05954

    Article  CAS  PubMed  Google Scholar 

  76. Ni J-Q, Liu L-P, Binari R et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100. doi:10.1534/genetics.109.103630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haley B, Hendrix D, Trang V, Levine M (2008) A simplified miRNA-based gene silencing method for Drosophila melanogaster. Dev Biol 321:482–490. doi:10.1016/j.ydbio.2008.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ni J-Q, Zhou R, Czech B et al (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407. doi:10.1038/nmeth.1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  80. Port F, Chen H-M, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111:E2967–E2976. doi:10.1073/pnas.1405500111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xue Z, Wu M, Wen K et al (2014) CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. G3 (Bethesda) 4(11):2167–2173. doi:10.1534/g3.114.014159

    Article  PubMed Central  Google Scholar 

  82. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  83. Ran FA, Hsu PD, Lin CY, Gootenberg JS (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ren X, Yang Z, Mao D et al (2014) Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (Bethesda) 4:1955–1962. doi:10.1534/g3.114.013821

    Article  CAS  Google Scholar 

  85. Southall TD, Gold KS, Egger B et al (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26:101–112. doi:10.1016/j.devcel.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428. doi:10.1038/74487

    Article  PubMed  CAS  Google Scholar 

  87. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308. doi:10.1038/85871

    Article  PubMed  CAS  Google Scholar 

  88. Zielke N, Edgar BA (2015) FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev Dev Biol. doi:10.1002/wdev.189

    PubMed  Google Scholar 

  89. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. doi:10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  90. Sugiyama M, Sakaue-Sawano A, Iimura T et al (2009) Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci U S A 106:20812–20817. doi:10.1073/pnas.0906464106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zielke N, Korzelius J, van Straaten M et al (2014) Fly-FUCCI: a versatile tool for studying cell proliferation in complex tissues. Cell Rep. doi:10.1016/j.celrep.2014.03.020

    PubMed  Google Scholar 

  92. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. doi:10.1038/nature06293

    Article  CAS  PubMed  Google Scholar 

  93. Richier B, Salecker I (2014) Versatile genetic paintbrushes: Brainbow technologies. Wiley Interdiscip Rev Dev Biol. doi:10.1002/wdev.166

    PubMed  PubMed Central  Google Scholar 

  94. Hampel S, Chung P, McKellar CE et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259. doi:10.1038/nmeth.1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hadjieconomou D, Rotkopf S, Alexandre C et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266. doi:10.1038/nmeth.1567

    Article  CAS  PubMed  Google Scholar 

  96. Evans CJ, Olson JM, Ngo KT et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605. doi:10.1038/nmeth.1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gohl DM, Silies MA, Gao XJ et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237. doi:10.1038/nmeth.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709. doi:10.1038/nn1681

    Article  CAS  PubMed  Google Scholar 

  99. Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548. doi:10.1016/j.cell.2010.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Johnson AAT, Hibberd JM, Gay C et al (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J 41:779–789. doi:10.1111/j.1365-313X.2005.02339.x

    Article  CAS  PubMed  Google Scholar 

  101. Kawakami K, Abe G, Asada T et al (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105. doi:10.1186/1471-213X-10-105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Otsuna H, Hutcheson DA, Duncan RN et al (2015) High-resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer-trap lines. Dev Dyn 244:785–796. doi:10.1002/dvdy.24260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. O’Brochta DA, Pilitt KL, Harrell RA et al (2012) Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. G3 (Bethesda) 2:1305–1315. doi:10.1534/g3.112.003582

    Article  PubMed Central  CAS  Google Scholar 

  104. Chae J, Zimmerman LB, Grainger RM (2002) Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech Dev 117:235–241

    Article  CAS  PubMed  Google Scholar 

  105. Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci U S A 99:1377–1382. doi:10.1073/pnas.022646899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Janina Ander, Seth Cheetham, Jelle van den Ameele, and Owen Marshall for comments on the manuscript. This work was funded by a Wellcome Trust Senior Investigator Award (103792/Z/14/Z) and BBSRC Project Grant (BB/L007800/1) to A.H.B. A.H.B. acknowledges core funding to the Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea H. Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caygill, E.E., Brand, A.H. (2016). The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics