Skip to main content
Log in

Adenosine phosphates and energy charge in different tissues ofMytilus edulis L. under aerobic and anaerobic conditions

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Concentrations of AMP, ADP and ATP are determined in total tissue and in posterior adductor muscle, hepatopancreas, mantle and residue ofMytilus edulis, in order to calculate the energy charge. This parameter was the highest in posterior adductor muscle (0.91) and the lowest in the hepatopancreas (0.69).

  2. 2.

    During exposure to air minimum levels of about 60% of the normal ATP content were determined in total mussel and the various tissues. The decrease in ATP could be accounted for by the increase in concentrations of AMP plus ADP and therefore the total adenylate pool was hardly affected.

  3. 3.

    The energy charge decreased in total animal during the initial days of anoxia, but raised again at the 7th day to a value equal to that in dead animals. The shift after 3 days of anoxia was highest in the posterior adductor muscle (0.24) and lowest in the hepatopancreas (0.14).

  4. 4.

    The energy charge was nearly the same in both “fed” and “starved” mussels and changed within the same range (0.85–0.6) during anaerobiosis. In “starved” animals, however, the minimum value was reached at an earlier stage.

  5. 5.

    Within this range key enzymes are highly sensitive to regulation by the energy charge according to the theory of Atkinson (1968).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP, ADP, ATP :

adenosine-5′-mono-, di-, triphosphate

NADH :

β-nicotinamide-adenine dinucleotide (reduced)

TCA :

trichloroacetic acid

PCA :

perchloric acid

S.D. :

standard deviation

PEP :

phosphoenolpyruvate

References

  • Addink, A.D.F., Veenhof, P.R.: Regulation of mitochondrial matrix enzymes inMytilus edulis L. Proc. 9th Europ. mar. biol. Symp. (ed. Barnes, H.), pp. 109–119. Aberdeen: University Press 1975

    Google Scholar 

  • Ansell, A.D.: In: Annual report of the Scottish Marine Biological Association, p. 29 (1974)

  • Atkinson, D.E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry7, 4030–4034 (1968)

    Google Scholar 

  • Atkinson, D.E., Walton, G.M.: Adenosine triphosphate conservation in metabolic regulation. J. biol. Chem.242, 3239–3241 (1967)

    Google Scholar 

  • Ball, W.J., Jr., Atkinson, D.E.: Adenylate energy charge inSaccharomyces cerevisiae during starvation. J. Bact.121, 975–982 (1975)

    Google Scholar 

  • Bomsel, J.-L., Pradet, A.: Study of adenosine 5′-mono-, di-and triphosphates in plant tissues. IV. Regulation of the level of nucleotides,in vivo, by adenylate kinase: theoretical and experimental study. Biochim. biophys. Acta (Amst.)162, 230–242 (1968)

    Google Scholar 

  • Chapman, A.G., Fall, L., Atkinson, D.E.: Adenylate energy charge inEscherichia coli during growth and starvation. J. Bact.108, 1072–1086 (1971)

    Google Scholar 

  • Derr, R.F., Zieve, L.: Adenylate energy charge: relation to guanylate energy charge and the adenylate equilibrium constant. Biochem. biophys. Res. commun.49, 1385–1390 (1972)

    Google Scholar 

  • Jaworek, D., Gruber, W., Bergmeyer, H.U.: Adenosin-5′-diphosphat und Adenosin-5′-monophosphat. In: Methoden der enzymatischen Analyse (ed. Bergmeyer, H.U.), Vol. II, pp. 2051–2055. Weinheim: Verlag Chemie 1970a

    Google Scholar 

  • Jaworek, D., Gruber, W., Bergmeyer, H.U.: Adenosin-5′-triphosphat. In: Methoden der enzymatischen Analyse (ed. Bergmeyer, H.U.), Vol. II, pp. 2020–2024. Weinheim: Verlag Chemie 1970b

    Google Scholar 

  • Kluytmans, J.H., Veenhof, P.R., Zwaan, A. de: Anaerobic production of volatile fatty acids in the sea musselMytilus edulis L. J. comp. Physiol.104, 71–78 (1975)

    Google Scholar 

  • Lehninger, A.L.: Biochemistry, p. 400. New York: Worth Publishers, Inc. 1970

    Google Scholar 

  • Liao, C.-L., Atkinson, D.E.: Regulation at the phosphoenolpyruvate branchpoint inAzotobacter vinelandii: phosphoenolpyruvate carboxylase. J. Bact.106, 31–36 (1971a)

    Google Scholar 

  • Liao, C.-L., Atkinson, D.E.: Regulation at the phosphoenolpyruvate branchpoint inAzotobacter vinelandii: pyruvate kinase. J. Bact.106, 37–44 (1971b)

    Google Scholar 

  • Markland, F.S., Wadkins, C.L.: Adenosine triphosphate-adenosine 5′-monophosphate phosphotransferase of bovine liver mitochondria. I. Isolation and chemical properties. J. biol. Chem.241, 4124–4135 (1966)

    Google Scholar 

  • Newsholme, E.A., Start, C.: Regulation in metabolism, p. 109, 323. London: John Wiley and Sons 1973

    Google Scholar 

  • Potts, W.T.W.: The inorganic and amino acid composition of some lamellibranch muscles. J. exp. Biol.35, 749–764 (1958)

    Google Scholar 

  • Purich, D.L., Fromm, H.J.: Studies on factors influencing enzyme responses to adenylate energy charge. J. biol. Chem.247, 249–255 (1972)

    Google Scholar 

  • Purich, D.L., Fromm, H.J.: Additional factors influencing enzyme responses to the adenylate energy charge. J. biol. Chem.248, 461–466 (1973)

    Google Scholar 

  • Ridge, J.W.: Hypoxia and the energy charge of the cerebral adenylate pool. Biochem. J.127, 351–355 (1972)

    Google Scholar 

  • Thompson, F.M., Atkinson, D.E.: Response of nucleoside diphosphate kinase to the adenylate energy charge. Biochem. biophys. Res. Commun.45, 1581–1585 (1971)

    Google Scholar 

  • Wijsman, T.C.M.: pH fluctuations inMytilus edulis L. in relation to shell movements under aerobic and anaerobic conditions. Proc. 9th Europ. mar. biol. Symp. (ed. Barnes, H.), pp. 139–149. Aberdeen: University Press 1975

    Google Scholar 

  • Wijsman, T.C.M.: ATP content and mortality inMytilus edulis L. from different habitats in relation to anaerobiosis. Neth. J. Sea Res. (in press)

  • Zs.-Nagy, I.: Adenosine phosphate concentrations and carbohydrate consumption in the tissues ofAnodonta cygnea L. (Mollusca, Pelecypoda) under normal and anoxic conditions. Acta Biochim. Biophys. Acad. Sci. hung.8, 143–151 (1973)

    Google Scholar 

  • Zs.-Nagy, I., Ermini, M.: ATP production of the tissues of the bivalveMytilus galloprovincialis (Pelecypoda) under normal and anoxic conditions. Comp. Biochem. Physiol.43B, 593–600 (1972)

    Google Scholar 

  • Zwaan, A. de, Bont, A.M.Th. de: Phosphoenolpyruvate carboxykinase from adductor muscle tissue of the sea musselMytilus edulis L. J. comp. Physiol.96, 85–94 (1975)

    Google Scholar 

  • Zwaan, A. de, Kluytmans, J.H.F.M., Zandee, D.I.: Facultative anaerobiosis in molluscs. Biochem. Soc. Symp.41, 133–167 (1976)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W.J.A. van: Aneerobic glucose degradation in the sea musselMytilus edulis L. Comp. Biochem. Physiol.44B, 429–439 (1973)

    Google Scholar 

  • Zwaan, A. de, Wijsman, T.C.M.: Anaerobic metabolism in bivalvia (Mollusca) I. Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. (in press)

  • Zwaan, A. de, Zandee, D.I.: The utilization of glycogen and accumulation of some intermediates during anaerobiosis inMytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijsman, T.C.M. Adenosine phosphates and energy charge in different tissues ofMytilus edulis L. under aerobic and anaerobic conditions. J Comp Physiol B 107, 129–140 (1976). https://doi.org/10.1007/BF00691220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691220

Keywords

Navigation