Skip to main content
Log in

Tissue transaminase activities in the black-sea mollusc Mytilus galloprovincialis Lam. with different shell color

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The tissue activities of aspartate aminotransferase (AST, EC 2.6.1.1) and alanine aminotransferase (ALT, EC 2.6.1.2) were studied in the bivalve molluscs differing in shell color. The shell color patterns were evaluated by photographing and computer image processing in Adobe Photoshop CS-3. The transaminase activities were determined by the Reitman-Frankel method. The four shell-color groups of molluscs were distinguished: black, intermediate, dark- and light brown. The AST and ALT activities were found to increase as shell color became lighter, probably reflecting different tolerance of molluscs to habitats with different oxygen concentration. The ALT distribution pattern differed appreciably in the foot of M. galloprovincialis where the highest values were found in the black-colored mussels, apparently due to the change of the predominant enzyme function. In this tissue, the transamination reaction was directed towards replenishing the pool of free amino acids required for the synthesis of byssus filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov, V.N., Kholodov, V.I., Senicheva, M.I., Pirkova, A.V., and Bulatov, K.V., Biologiya Kultiviruemykh Midii (Biology of Cultivated Mussels), Kiev, 1989.

    Google Scholar 

  2. Stolbova, N.G., Pirkova, A.V., and Ladygina, L.V., Genetics of shell color in mussel Mytilus galloprovincialis Lam., Cytol. Genet., 1996, vol. 30, no. 6, pp. 62–65.

    Google Scholar 

  3. Newkirk, G.F., Genetics of shell color in Mytilus edulis L. and the association of growth rate with shell color, J. Exp. Marine. Biol. Ecol., 1980, vol. 47, no. 1, pp. 89–94.

    Article  Google Scholar 

  4. Shurova, N.M. and Zolotarev, V.N., Analysis of phenotypic structure of settlements of mussels Mytilus galloprovincialis from Black Sea by the color of external prismatic layer of their shells, Mor. Ekol. Zh., 2008, vol. 7, no. 4, pp. 88–97.

    Google Scholar 

  5. Bulatov, K.V., Genetic nature of shell color in Black Sea mussel Mytilus galloprovincialis Lam., Dokl. Akad. Nauk USSR, Ser. B., 1984, no. 6, pp. 53–55.

    Google Scholar 

  6. Shcherban, S.A., Peculiarities of somatic and generative growth in some color morphs of mussels Mytilus galloprovincialis Lam., Ekol. Moriya, 2000, vol. 53, pp. 77–81.

    Google Scholar 

  7. Bulatov, K.V. and Zvezdina, T.F., Differences in attachments to substrate in mussels of different genotypes, Tsitol. Gen., 1987, vol. 21,issue 1, pp. 71–72.

    Google Scholar 

  8. Borodina, A.A. and Soldatov, A.A., Comparative evaluation of content and composition of carotenoids in the tissues of different color morphs of Mytilus galloprovincialis Lam., Nauk. Zap. Ternop., Nats. Ped. Univ., Seriya Biol., 2010, vol. 44, no. 3, pp. 25–28.

    Google Scholar 

  9. Stolbova, N.G. and Ladygina, L.V., Genetic polymorphism in mussel Mytilus galloprovincialis Lam. at the Krym Coast, Tsitol. Gen., 1994, vol. 28, no. 2, pp. 62–66.

    Google Scholar 

  10. Aleksandrova, O.L., Soldatov, A.A., and Golovina, I.V., Peculiarities of glutathione-peroxide system in the tissues of two color morphs of Black Sea mussel, Ekol. Moriya, 2001, vol. 58, pp. 22–26.

    Google Scholar 

  11. Kucherenko, N.E., Vinogradova, R.P., Litvinenko, A.R., Tsudzevich, B.A., and Vasil’ev, A.N., Biokhimicheskii Spravochnik (Biochemical Reference Book), Kiev, 1979.

    Google Scholar 

  12. Baginski, R.M. and Pierce, S.K., A comparison of amino acid accumulation during high salinity adaptation with anaerobic energy metabolism in the ribbed mussel Modiolus demissus, J. Exp. Zool., 1978, vol. 203, no. 3, pp. 419–428.

    Article  CAS  Google Scholar 

  13. Hochachka, P.W., Fields, J., and Mustafa, T., Animal life without oxygen: basic biochemical mechanisms, Am. Zool., 1973, vol. 13, pp. 543–555.

    CAS  Google Scholar 

  14. Paynter, K.T., Karam, G.A., Ellis, L.L., and Bishop, S.H., Subcellular distribution of aminotransferases, and pyruvate branch point enzymes in gill tissue from four bivalves, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 1985, vol. 82, no. 1, pp. 129–132.

    CAS  Google Scholar 

  15. Paynter, K.T., Hoffmann, R.J., Ellis, L.L., and Bishop, S.H., Partial characterization of the cytosolic and mitochondrial aspartate aminotransferase from ribbed mussel gill tissue, J. Exper. Zool., 1984, vol. 231, pp. 185–197.

    Article  CAS  Google Scholar 

  16. Johnson, A.G. and Utter, F.M., Electrophoretic variants of aspartate aminotransferase of the bay mussel, Mytilus edulis (Linnaeus, 1758), Comp. Biochem. Physiol. B: Biochem., 1973, vol. 44, pp. 317–323.

    CAS  Google Scholar 

  17. Hayashi, Y.S., Alanine aminotransferase from gill tissue of the brackish water bivalve Corbicula japonica (Prime): subcellular localization and some enzymatic properties, Exp. Mar. Biol. Ecol., 1993, vol. 170, pp. 45–54.

    Article  CAS  Google Scholar 

  18. Kulikova, A.D., Revealing the color morphs of mollusc Mytilus galloprovincialis Lam. using computer processing of images, Mor. Ekol. Zh., 2012, vol. 11, no. 3, pp. 63–67.

    Google Scholar 

  19. Viarengo, A., Canesi, L., Garcia Martinez, P., and Peters, L.D., Pro-oxidant processes and antioxidant defense system in the tissues of the antarctic scallop (Adamussium colbecki) compared to the mediterranean scallop (Pecten jacobaeus), Comp. Biochem. Physiol., 1995, vol. 111 B, pp. 119–126.

    Article  CAS  Google Scholar 

  20. Kamyshnikov, V.S., Spravochnik po Kliniko-Biokhimicheskim Issledovaniyam i Laboratornoi Diagnostike (A Guide to Clinical-Biochemical Investigations and Laboratory Diagnostics), Moscow, 2004.

    Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., and Farr, A.L., Protein measurement with the folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 266, p. 75.

    Google Scholar 

  22. Puppo, J. and Blasco, J., Partial characterization of alanine aminotransferase from gills and digestive gland of the bivalve Ruditapes philippinarum, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 1995, vol. 1, no. 1, pp. 99–109.

    Article  Google Scholar 

  23. Soldatov, A.A., Andreenko, T.I., Sysieva, I.V., and Sysiev, A.A., Tissue specificity of metabolism in bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 3, pp. 284–289.

    CAS  PubMed  Google Scholar 

  24. Greenwalt, D.E. and Bishop, S.H., Effect of aminotransferase inhibitors on the pattern of free amino acid accumulation in isolated mussel hearts subjected to hyperosmotic stress, Physiol. Zool., 1980, vol. 53, no. 3, pp. 262–269.

    CAS  Google Scholar 

  25. Waarde, A., Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production, Comp. Biochem. Physiol. B., 1988, vol. 91, no. 2, pp. 207–228.

    Google Scholar 

  26. Mistri, M., Rossi, R., and Ceccherelli, V.U., Growth and production of the ark shell Scapharca inaequivalvis (Bruguière) in a lagoon of the Po River delta, Mar. Ecol., 1988, vol. 9, no. 1, pp. 35–49.

    Article  Google Scholar 

  27. Andreenko, T.I., Soldatov, A.A., and Golovina, I.V., Adaptive reorganization of metabolism in bivalve mollusc Anadara inaequivalvis bruguiere under condition of experimental anoxia, Dop. NAN Ukraine, 2009, no. 7, pp. 155–160.

    Google Scholar 

  28. Almeida-Val, V.M., Val, A.L., Duncan, W.P., Souza, F.C., Paula-Silva, M.N., and Land, S., Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2000, vol. 125, no. 2, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez, M.L., Landry, C., Boehm, R., Manning, S., Cheek, A.O., and Rees, B.B., Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the gulf killifish, Fundulus grandis, J. Exp. Biol., 2006, vol. 209, pt. 19, pp. 3851–3861.

    Article  CAS  PubMed  Google Scholar 

  30. Mommsen, Th.P., French, C.J., and Hochachka, P.W., Sites and patterns of protein and amino acid utilization during spawning migration of salmon, Can. J. Zool., 1980, vol. 58, pp. 1785–1799.

    Article  CAS  Google Scholar 

  31. Beaumont, A., Gjerdrem, T., and Moran, P., Blue mussel-M. edulis and Mediterranean mussel-M. galloprovincialis, 6th Framework Plan of the European Commission: Genetic Effects of Domestication, Culture and Breeding of Fish and Shellfish, and Their Impacts on Wild Populations, 2007, pp. 62–69.

    Google Scholar 

  32. Inoue, K. and Othe, S., Adhesive protein cDNA of Mytilus galloprovincialis encodes decapeptide repeats but no hexapeptide motif, Biol. Bull., 1994, vol. 186, pp. 349–355.

    Article  CAS  PubMed  Google Scholar 

  33. Lucas, J.M., Vaccaro, E., and Waite, J.H., A molecular, morphometric and mechanical comparison of the structural elements of byssus from Mytilus edulis and Mytilus galloprovincialis, J. Exp. Biol., 2002, vol. 205, pp. 1807–1817.

    CAS  PubMed  Google Scholar 

  34. Inoue, K., Waite, H., Matsuoka, M., Odo, S., and Harayama, S., Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus, Biol. Bull., 1995, vol. 189, pp. 370–375.

    Article  CAS  PubMed  Google Scholar 

  35. Waite, J.H. and Tanzer, M.L., Polyphenolic substances of Mytilus edulis, Science, 1981, vol. 212, pp. 1038–1040.

    Article  CAS  PubMed  Google Scholar 

  36. Szpak, P., Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis, J. Archaeol. Science, 2011, vol. 38, no. 12, pp. 3358–3372.

    Article  Google Scholar 

  37. Lehninger, A.L., Nelson, D.L., and Cox, M.M., Principles of Biochemistry, 3rd Ed., New York: Worth Publishers, 1993.

    Google Scholar 

  38. Soldatov, A.A., Gostukhina, O.L., and Golovina, I.V., State of antioxidant enzyme complex in the tissues of Black Sea mollusc Mytilus galloprovincialis Lam. under conditions of natural oxidative stress, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, no. 2, pp. 150–155.

    CAS  PubMed  Google Scholar 

  39. Dubinina, E.E. and Shugalei, I.V., Oxidative modification of proteins, Usp. Sovr. Biol., 1993, vol. 113, no. 1, pp. 71–81.

    CAS  Google Scholar 

  40. Paynter, K.T., Ellis, L.L., and Bishop, S.H., Cellular location and partial characterization of the alanine aminotransferase in ribbed mussel gill tissue, J. Exper. Zool., 1984, vol. 232, no. 1, pp. 51–58.

    Article  CAS  Google Scholar 

  41. Kulikova, A.D., Peculiarities of genetic polymorphism of color groups of Mytilus galloprovincialis Lam. in Black Sea, VIII Intern. Science-Practice Conf. “Pontus Euxinus 2013”, pp. 83–84.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kulikova.

Additional information

Original Russian Text © A.D. Kulikova, A.A. Soldatov, T.I. Andreenko, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 1, pp. 21–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, A.D., Soldatov, A.A. & Andreenko, T.I. Tissue transaminase activities in the black-sea mollusc Mytilus galloprovincialis Lam. with different shell color. J Evol Biochem Phys 51, 23–31 (2015). https://doi.org/10.1134/S0022093015010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015010044

Key words

Navigation