Acta Neuropathologica

, Volume 14, Issue 4, pp 326–337 | Cite as

Enzyme changes in the hereditary ataxic rabbit

  • N. Robinson


The enzyme histochemistry of the cerebellum, pons, medulla and spinal cord of rabbits with hereditary ataxia is reported.

Nerve cells, mainly within the vestibular and cochlear nuclei and the dentate nuclei showed an increase in glucose 6-phosphate dehydrogenase activity and a decrease in enzymes of Krebs (tricarboxylic acid) cycle suggesting that production of energy yielding metabolites may have been impaired. The decrease in activity of the Krebs cycle enzymes and of monoamine oxidase in the neuropil of affected nuclei suggested that an alteration in metabolism within the neuropil was an important factor.

Glycogen deposits were more prominent in the affected cerebellar nuclei and tracts than in the brainstem, but the enzyme glycogen-phosphorylase was generally normal.

There was no evidence of massive gliosis but the intense oxidative enzyme activities within swollen hyperactive astrocytes in affected nuclei and tracts indicated increased metabolism in these cells.


Ataxic Rabbit Nucleus N. VIII Enzyme Histochemistry 


Bericht über enzymhistochemische Untersuchungen von Kleinhirn, Brücke, Medulla und Rückenmark von Ratten mit hereditärer Ataxie.

Die Nervenzellen, vorwiegend in den Vestibularis- und Cochleariskernen sowie im Zahnkern, zeigten eine Zunahme der Glucose-6-Phosphat-Dehydrogenase-Aktivität und Abnahme von Enzymen des Krebs(Tricarbonsäure)-Cyclus, was auf eine Störung der Produktion energiegebundener Metaboliten hinweist. Die Abnahme der Enzyme des Krebs-Cyclus und der Monoaminooxydase im Neuropil der betroffenen Kerne weist darauf hin, daß eine Störung des Stoffwechsels im Neuropil einen wesentlichen Faktor darstellt.

Glykogenablagerungen fanden sich stärker in den betroffenen Kleinhirnkernen und-bahnen als im Hirnstamm, während die Glykogen-Phosphorylase normale Aktivität zeigte.

Eine massive Gliose lag nicht vor, doch fand sich eine starke Aktivität oxydativer Enzyme in geschwollenen Astrocyten in den betroffenen Kernen und Bahnen, die auf einen gesteigerten Stoffwechsel in diesen Zellen hinweist.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, M. V.: The histopathology of a new type of hereditary loss of co-ordination in the domestic rabbit. Amer. J. Anat.76, 183–199 (1945).Google Scholar
  2. Becker, N. H., Goldfischer, S., Shin, W. Y., Novikoff, A. B.: The localisation of enzyme activities in the rat brain. J. biophys. biochem. Cytol.8, 649–663 (1960).Google Scholar
  3. Bradfield, J. R. G.: Phosphatase cytochemistry in relation to protein secretion. Exp. Cell Res. Suppl.1, 338–350 (1949).Google Scholar
  4. Dahlström, A., Häggendahl, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neurone system. Acta physiol. scand.67, 278–288 (1966).Google Scholar
  5. Dempsey, E. W., Wislocki, G. B.: Histochemical contributions to physiology. Physiol. Rev.26, 1–27 (1945).Google Scholar
  6. Dixon, M., Webb, E. C.: Enzymes (2nd Ed.) London: Longmans Green 1964.Google Scholar
  7. Dow, R. S., Moruzzi, G.: The physiology and pathology of the cerebellum, p. 675. Minneapolis: University of Minnesota Press 1958.Google Scholar
  8. Friede, R. L.: Histochemical demonstration of phosphorylase in brain tissue: association of postmortal neuron changes with phosphorylase activity. J. Histochem. Cytochem.7, 34–38 (1959).Google Scholar
  9. — de Jong, R. N.: Neuronal enzymatic failure in Creutzfeldt-Jakob disease. Arch. Neurol. (Chic.)10, 181–195 (1964).Google Scholar
  10. Klatzo, I., Miquel, J.: Observations on pinocytosis in nervous tissue. J. Neuropath. exp. Neurol.19, 475–487 (1960).Google Scholar
  11. O'Leary, J. L., Harris, A. B., Fox, R. R., Smith, J. M., Tidwell, M.: Ultrastructural lesions in rabbit hereditary ataxia. Arch. Neurol. (Chic.)13, 238–262 (1965).Google Scholar
  12. —, Sawin, P. B., Luse, S., Harris, A. B., Erickson, L. S.: Hereditary ataxia of rabbits. Arch. Neurol. (Chic.)6, 123–137 (1962).Google Scholar
  13. ——, Stohr, P. E.: Hereditary ataxia of rabbits: identification of glycogen in hind-brain lesions. J. nerv. ment. Dis.136, 130–138 (1963).Google Scholar
  14. Reis, J.: The specificity of phosphomonoesterase in human tissues. Biochem. J.48, 548–551 (1951).Google Scholar
  15. Robinson, N.: Friedreich's ataxia: a histochemical and biochemical study, Part I. Enzymes of carbohydrate metabolism. Acta neuropath. (Berl.)6, 25–34 (1966).Google Scholar
  16. —: Histochemistry of rat brain stem monoamine oxidase during maturation. J. Neurochem.15, 1151–1158 (1968).Google Scholar
  17. —: Histochemistry of human cervical posterior root ganglion cells and a comparison with anterior horn cells. J. Anat. (Lond.)104, 55–64 (1969).Google Scholar
  18. Sawin, P. B., Anders, M. V., Johnson, R. B.: Ataxia, an hereditary nervous disorder of the rabbit. Proc. Soc. Acad. Sci. (Wash.)28, 123–127 (1942).Google Scholar
  19. Shimizu, N., Okada, M.: Histochemical distribution of phosphorylase in rodent brain from newborn to adults. J. Histochem. Cytochem.5, 459–471 (1957).Google Scholar
  20. Tourtellotte, W. W., Lowry, O. H., Passoneau, J. V., O'Leary, J. L., Harris, A. B., Rowe, M. J.: Carbohydrate metabolites in rabbit hereditary ataxia. Arch. Neurol. (Chic.)15, 283–288 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • N. Robinson
    • 1
    • 2
  1. 1.Department of Chemical Pathology, Institute of NeurologyThe National Hospital for Nervous DiseasesLondon
  2. 2.Dept. of AnatomyThe London Hospital Medical CollegeLondonEngland

Personalised recommendations