Skip to main content
Log in

Morphological basics for reorganization of the rat cerebellar cortex during senescence

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

A histological and immunohistochemical investigation of the cerebellar cortex was performed in senescent (36-month-old) versus young (3-month-old) Wistar rats. In senescent animals, the cerebellar cortex typically displays degeneration of the Purkinje cells accompanied by a loss of the calcium-binding protein calbindin. This finding suggests that the presence of calbindin in the Purkinje cells is a criterion of their functional activity. Degeneration of the Purkinje cells is also accompanied by a lesion of the synaptophysin-containing basket-cell networks indicative of impaired function of inhibitory (GABAergic) axo-axonal synapses. During senescence, significant reorganization occurs in the glomeruli of the cerebellar granular layer responsible for primary analysis of afferent information. The synaptophysin-reactive glomerular structures in the cerebellum of senescent animals disintegrate reflecting an alteration in the transmission of sensory information from the cerebrum to cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arshavsky, Yu.I., Gelfant, I.M., and Orlovsky, G.N., Mozzhechok i upravlenie ritmicheskimi dvizheniyami (The Cerebellum and Rhythmic Motion Control), Moscow, 1984.

    Google Scholar 

  2. Baev, K.V. and Shimansky, Yu.P., New concept of the role of the cerebellum in operating motion control and formation of motoric automatism, Neirofiziol., 1990, vol. 22, pp. 415–421.

    CAS  Google Scholar 

  3. Fanardzhyan, V.V. and Grigoryan, R.A., Integrativnye mekhanizmy mozzhechka. Rukovodstvo po fiziologii (Integrative Mechanisms of the Cerebellum. Handbook of Physiology), Leningrad, 1983. pp. 112–170.

    Google Scholar 

  4. Manto, M., Bower, J.M., Conforto, A.B., Delgado-Garcia, J.M., Nascimento, S., de Guarda, F., Gerwig, M., Habas, Ch., and Nagura, N., Consensus Paper: Roles the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement, Cerebellum, 2012. vol.11, pp. 457–487.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bower, J.M. and Parsons, L.M., Rethinking the lesser brain, Sci. Amer., 2003, vol. 289, no. 2, pp. 51–57.

    Article  Google Scholar 

  6. Schmahmann, J.D., Cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion, Int. Rev. Psychiat., 2001. vol.13, no. 2, pp. 247–260.

    Article  Google Scholar 

  7. Schmahmann, J.D. and Caplan, D., Cognition, emotion and cerebellum, Brain, 2006, vol. 129, no. 2, pp. 288–292.

    Google Scholar 

  8. Ito, M., The Cerebellum and neural Control, New York, 1984.

    Google Scholar 

  9. Paxinos, G., The Rat Nervous System, Amsterdam, 2004.

    Google Scholar 

  10. Kalinichenko, S.G. and Motavkin, P.A., Kora mozzhechka (Cerebellar Cortex), Moscow, 2005.

    Google Scholar 

  11. The Cerebellum: Recent Development in Cerebellar Research, Highstein, S.M. and Thatch, W.T., Eds., New York, 2002.

  12. Sturrock, R.R., Changes in neuron number in the cerebellar cortex of the ageing mouse, Z. Hirnforsch., 1989, vol. 30, pp. 499–503.

    CAS  Google Scholar 

  13. Zhang, C., Zhu, Q., and Hua, T., Aging of cerebellar Purkinje cells, Cell Tiss. Res., 2010, vol. 341, pp. 341–347.

    Article  Google Scholar 

  14. Henrique, R.M.F., Rocha, E., Reis, A., Marcos, R., Oliveira, M.N., Silva, M.W., and Monteiro, A.F., Age-related changes in rat cerebellar basket cells: a quantitative study using unbiased stereological methods, J. Anat., 2001, vol. 198, pp. 727–736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gilerovich, E.G., Fedorova, E.A., and Korzhevskii, D.E., Degeneration of Purkinje cells in the cerebellum of Wistar-Kyoto rats during senescence, Funkts. Mezhpol. Asim. i Plast. Mozga, Mater. Vseros. Konf. (Interhemispheric Asymmetry and Brain Plasticity, Mater. All-Russ. Conf.), Moscow, 2012. pp. 257–259.

    Google Scholar 

  16. Wiedermann, B. and Franke, W.W., Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr. 30,000 characteristic of presynaptic vesicles, Cell, 1985, vol. 41, pp. 1017–1028.

    Article  Google Scholar 

  17. Korzhevskii, D.E., Sukhorukova, E.G., Gilerovich, E.G., Petrova, E.S., Kirik, O.V., and Grigor’ev, I.P., Advantages and disadvantages of zinc-ethanol-formaldehyde as a fixative for immunocytochemical studies and confocal laser microscopy, Neurosci. Behav. Physiol., 2014, vol. 44, pp. 542–545.

    Article  CAS  Google Scholar 

  18. Teoreticheskoe i prakticheskoe primenenie metodov immunogistokhimii (Theoretical and Practical Application of Immunohistochemical Methods), Korzhevskii, D.E., Ed., St. Petersburg, 2014.

  19. Hartman, D., Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate male LAF mice, J. Gerontol., 1968, vol. 23, pp. 476–482.

    Article  Google Scholar 

  20. Rogers, J., The neurobiology of cerebellar senescence, Ann. N.Y. Acad. Sci., 1988, vol. 515, pp. 251–268.

    Article  CAS  PubMed  Google Scholar 

  21. Hutchins, J.B. and Barger, S.W., Why neurons die: cell death in the nervous system, Anat. Rec., 1998, vol. 253, pp. 79–90.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen, B.B., Gundersen, H.J., and Pakkenberg, B., Aging of human cerebellum: a stereological study, J. Comp. Neurol., 2003, vol. 466, pp. 356–365.

    Article  PubMed  Google Scholar 

  23. Jurk, D., Wang, C., Miwa, S., Maddick, M., Korolchuk, V., Tsolou, A., Gonos, E.S., Thrasivoulou, C., Saffrey, M., Cameron, K., and von Zgliniski, T., Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNK damage response, Aging Cell, 2012, vol. 11, pp. 996–1004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Druge, H., Heinsen, H., and Heinsen, Y.L., Quan titative studies in ageing Chbb: THOM (Wistar rats) neuron numbers in lobules I, VIb+c and X, Bibliografia Anatomica, 1986. vol. 28, pp.121–137.

    Google Scholar 

  25. Bishop, G.A., Chen, Y.F., Berry, R.W., and King, J.S., An analysis of GABAergic afferents to basket cell bodies in the cat’s cerebellum, Brain Res., 1993, vol. 623, pp. 293–298.

    Article  CAS  PubMed  Google Scholar 

  26. Jakab, R.L. and Hamori, J., Quantitative morphology and synaptology of cerebellar glomeruli in the rat, Anat. Embryol., 1988, vol. 179, pp. 81–88.

    Article  CAS  PubMed  Google Scholar 

  27. Hamory, J., Jakab, R.L., and Takacs, J., Morphogenetic plasticity of neuronal elements in cerebellar glomeruli during deafferentation-induced synaptic reorganization, J.Neural Transpl. Plast., 1997, vol. 6, no. 1, pp. 11–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Gilerovich.

Additional information

Original Russian Text © E.G. Gilerovich, E.A. Fedorova, I.P. Grigor’ev, D.E. Korzhevskii, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 5, pp. 370—376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilerovich, E.G., Fedorova, E.A., Grigor’ev, I.P. et al. Morphological basics for reorganization of the rat cerebellar cortex during senescence. J Evol Biochem Phys 51, 421–427 (2015). https://doi.org/10.1134/S0022093015050087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015050087

Keywords

Navigation