Skip to main content
Log in

Polycyclic aromatic hydrocarbons with five-membered rings: Modeling of experimental X-ray and neutron-diffraction structures

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Several of the readily available theoretical programs are evaluated as tools for modeling the structures of polycyclic aromatic hydrocarbons with five-membered rings (CPAHs). The experimentally determined bond lengths and angles are compared to calculated values. Experimental bond lengths are also compared to Pauling and Huckel molecular orbital (HMO) bond orders. Previously published experimental X-ray and neutron-diffraction structures of acenaphthene, acenaphthylene, fluoranthene, cyclopent[o,p,q,r]benz[c]phenanthrene, and corannulene are modeled by the programs MMX, AM1, MNDO, and PM3, and previously reported STO-3G and 6-31G * data are also evaluated. In general, the error differences between the experimental and calculated results for all of the semiempirical programs were small. However, PM3 performed slightly better than AM1 and MMX, while MNDO generated structures which exhibited the largest deviation from experiment. Although the standard deviations for all programs are shown to be of comparable magnitude, a particular bond length or bond angle in any given theoretical calculation can exhibit significant error from the experimental data. The scatter in the bond order data computed from Huckel molecular orbital theory and valence bond theory is contrary to results obtained with alternant systems. It appears that these approaches are less successful at modeling accurately the nonalternant hydrocarbon systems described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plummer, B. F.; Hall, R. A.J. Chem. Soc., Chem. Commun. 1970, 44–46.

  2. Plummer, B. F.; Ferree, W. I.J. J. Chem. Soc., Chem. Commun. 1972, 306–307.

  3. Plummer, B. F.; Hopkinson, M. J.; Zoeller, J. H.J. Am. Chem. Soc. 1979,101, 6779–6781.

    Google Scholar 

  4. Plummer, B. F.; Al-Saigh, Z. Y.J. Phys. Chem. 1983,87, 1579–1582.

    Google Scholar 

  5. Plummer, B. F.; Al-Saigh, Z. Y.; Arfan, M.J. Org. Chem. 1984,49, 2069–2071.

    Google Scholar 

  6. Plummer, B. F.; Al-Saigh, Z. Y.; Arfan, M.Chem. Phys. Lett. 1984,104, 389–392.

    Google Scholar 

  7. Plummer, B. F.J. Phys. Chem. 1987,91, 5035–5037.

    Google Scholar 

  8. Plummer, B. F.; Singleton, S. F.J. Phys. Chem. 1990,94, 7363–7366.

    Google Scholar 

  9. Plummer, B. F.; Russell, S. J.; Reese, W. G.; Watson, W. H.; Krawiec, M.J. Org. Chem. 1991,56, 3219–3223.

    Google Scholar 

  10. Plummer, B. F.; Reese, W. G.; Watson, W. H.; Kashyep, R. P.Struct. Chem. 1993,4, 53–57.

    Google Scholar 

  11. Samanta, A.; Fessenden, R. F.J. Phys. Chem. 1989,93, 5823–5827.

    Google Scholar 

  12. Samanta, A.; Devadoss, C; Fessenden, R. W.J. Phys. Chem. 1990,94, 7106–7110.

    Google Scholar 

  13. Samanta, A.J. Am. Chem. Soc. 1991,113, 7427–7429.

    Google Scholar 

  14. Harvey, R. G.; Geacintov, N. E.Acc. Chem. Res. 1988,21, 66–73.

    Google Scholar 

  15. Harvey, R. G.; Pataki, J.; Cortez, C; Di Raddo, P.; Yang, C. X.J. Org. Chem. 1991,56, 1210–1217.

    Google Scholar 

  16. Ehrlich, H. W. W.Acta Crystallogr. 1957,10, 699–705.

    Google Scholar 

  17. Hazell, A. C.; Hazell, R. G.; Norskov-Lauritsen, L.; Briant, C. E.; Jones, D. W.Acta Crystallogr., Sect. C,1986,42, 690–693.

    Google Scholar 

  18. Hazell, A. C.; Jones, D. W.; Sowden, J. M.Acta Crystallogr., Sect. B 1977,33, 1516–1522.

    Google Scholar 

  19. Ehrlich, H. W.; Beevers, C. A.Acta Crystallogr. 1956,9. 602–606.

    Google Scholar 

  20. Hanson, J. C.; Nordman, C. E.Acta Crystallogr., Sect. B 1976,32, 1147–1153.

    Google Scholar 

  21. Wood., R. A.; Welberry, T. R.; Rae, A. D. J.J. Chem. Soc., Perkin Trans. 2 1985, 451–456.

  22. Gilbert, K. E., Serena Software: Bloomington, IN.

  23. Dewar, M. J. S.; Thiel, W.J. Am. Chem. Soc. 1977,99, 4899–4907.

    Google Scholar 

  24. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart. J. J. P.J. Am. Chem. Soc. 1985,107, 3902–3909.

    Google Scholar 

  25. Stewart, J. J. P.J. Comp.-Aided Mol. Design 1990,4, 1–104.

    Google Scholar 

  26. Stewart, J. J. P.;J. Comp. Chem. 1989,10, 209–220.

    Google Scholar 

  27. Peck, R. C.; Schulman, J. M.; Disch, R. L.J. Phys. Chem. 1990,94, 6637–6641.

    Google Scholar 

  28. Herndon, W. C.J. Am. Chem. Soc. 1974,96, 7605–7614.

    Google Scholar 

  29. Brock, C. P.; Dunitz, J. O.Acta Crystallogr., Sect. B 1982,38, 2218–2228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plummer, B.F., Steffen, L.K. & Herndon, W.C. Polycyclic aromatic hydrocarbons with five-membered rings: Modeling of experimental X-ray and neutron-diffraction structures. Struct Chem 4, 279–285 (1993). https://doi.org/10.1007/BF00673702

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00673702

Key words

Navigation