Skip to main content
Log in

The corrosion behavior of Co-Mo alloys in H2-H2O-H2S environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of Co alloyed with up to 40 wt.% Mo alloys was studied in H2-H2O-H2S gas mixtures over the temperature range between 600‡C and 900‡C. The parabolic rate constants for corrosion decreased with increasing amounts of Mo. The compositions of all gas atmospheres fall in the sulfide(s stability region of the ternary M-O-S phase diagrams at all temperatures investigated. All the corrosion scales were composed of sulfides, while no oxide was detected. The sulfide scales formed were duplex at all temperatures except at 900‡C. The outer layer consisted primarily of cobalt sulfide, while the inner layer was complex and heterophasic, the phases formed being highly composition dependent. MoS2 predominated in the inner layer for all alloys. However, a metallic Mo layer was formed in the innermost layer of Co-40 Mo. Activation energies were different for all alloys, increasing with increasing Mo content. Identical kinetics were observed for Co-30Mo corroded at 700–800‡C. A Chevrel-phase Co1.62Mo6S8 was present in scales formed on the samples exhibiting the temperature-independent kinetics. A possible model in which Co1.62Mo6S8 forms preferentially in H2-containing mixed gas is suggested. Alloys corroded at 900‡C formed a lamellar-structure scale which contained Co and CoMo2S4 layers perpendicular to the alloy surface. A eutectoid decomposition of an unknown Co-Mo sulfide may be responsible for the presence of the lamellar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Natesan and M. B. Delaplane, inCorrosion-Erosion Behavior of Materials, K. Natesan, ed. (Metallurgical Society of AIME, Warrendale, PA, 1980), p. 1.

    Google Scholar 

  2. M. Loudjani, J. C. Pivin, C. Roques-Carmes, P. Lacombe, and J. H. Davidson,Metall. Trans. A 13A, 1299 (1982).

    Google Scholar 

  3. M. F. Chen and D. L. Douglass,Oxid. Met. 31, 237 (1989).

    Google Scholar 

  4. R. V. Carter, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 341 (1989).

    Google Scholar 

  5. K. N. Strafford and P. K. Datta,Mater. Sci. Tech. 5, 765 (1989).

    Google Scholar 

  6. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).

    Google Scholar 

  7. G. Wang, R. V. Carter, and D. L. Douglass,Oxid. Met. 32, 273 (1989).

    Google Scholar 

  8. M. F. Chen, D. L. Douglass, and F. Gesmundo,Oxid. Met. 32, 185 (1989).

    Google Scholar 

  9. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 33, 425 (1990).

    Google Scholar 

  10. P. Singh and N. Birks,Oxid. Met. 12, 23 (1978).

    Google Scholar 

  11. F. Gesmundo andC. De Asmundis, inProceedings of the International Conference on Behavior of High Temperature Alloys in Aggressive Environments, I. Kirmanet al., eds. (Metal Society, London, 1980), p. 435.

    Google Scholar 

  12. K. Holthe and P. Kofstad,Corros. Sci. 20, 919 (1980).

    Google Scholar 

  13. N. S. Jacobson and W. L. Worrell,J. Electrochem. Soc. 131, 1182 (1984).

    Google Scholar 

  14. A. Rahmel, M. Schorr, A. Velasco-Tellez, and A. Pelton,Oxid. Met. 27, 199 (1987).

    Google Scholar 

  15. G. J. Yurek and M. H. LaBranche, inProceedings of the Conference on Corrosion-Erosion-Wear of Materials in Emerging Fossil Energy Systems, A. V. Levy, ed. (NACE, Houston, 1982), p. 933.

    Google Scholar 

  16. Wu Kai, D. L. Douglass, and F. Gesmundo,Oxid. Met. 37, 389 (1992).

    Google Scholar 

  17. S. Mrowec, S. Rusiecki, and A. Wojtowicz,Bull. Pol. Acad. Sci. Chem. 34, 411 (1986).

    Google Scholar 

  18. A. Davin,Cobalt 30, 19 (1966).

    Google Scholar 

  19. Bull. Alloy Phase Diagrams 1, 93 (1980).

  20. R. Chevral, M. Sergent, and J. Prigent,Mater. Res. Bull. 9, 1487 (1974).

    Google Scholar 

  21. A. M. Umarji, G. V. Subba Rao, M. P. Janawadkar, and T. S. Radhakrishnan,J. Phys. Chem. Solids 41, 421 (1980).

    Google Scholar 

  22. T. Flatley and N. Birks,J. Iron Steel Inst. 209, 523 (1971).

    Google Scholar 

  23. K. Kurokawa, T. Narita, and K. Nishida, inProceedings of the 3rd JIM International Symposium on High Temperature Corrosion of Metals and Alloys (JIM, Sendai, 1983), p. 465.

    Google Scholar 

  24. S. Mrowec and K. Przybylski,Oxid. Met. 23, 107 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shing, C.C., Douglass, D.L. & Gesmundo, F. The corrosion behavior of Co-Mo alloys in H2-H2O-H2S environments. Oxid Met 37, 441–461 (1992). https://doi.org/10.1007/BF00666629

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666629

Key words

Navigation