Skip to main content
Log in

High-Temperature Corrosion of Chromia-Forming Ni-Based Alloys in CO2 Containing Impurities

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Future technologies require structural materials resistant to environmental degradation in high-temperature CO2-rich environments. Herein, we exposed several commercially available Ni-based alloys (230, 263, 282, 617, 625, and 740H) to atmospheric pressure gases intended to simulate the compositions expected in future direct-fired supercritical CO2 power cycles. The alloys were exposed to 95% CO2 + 4% H2O + 1% O2 and the same gas containing 0.1% SO2 at temperatures of 600, 650, 700, 750, and 800 °C for 2500 h. With minor exceptions, chromia scales formed on all alloys at all temperatures in the SO2-free gas, yielding parabolic growth rates that followed an Arrhenius temperature dependence. Behavior in the SO2-containing gas was more complex. Generally, the alloys performed well at temperatures of 650, 750, and 800 °C. While some alloys further performed relatively well across the whole temperature range, several of the alloys experienced chromia failure resulting in non-protective duplex oxide scales and high oxidation rates, at temperatures of 600 and 700 °C. Deviation from protective behavior was associated with internal sulfide formation and, additionally for the case of 600 °C, external sulfate formation. Extensive carburization accompanied growth of the non-protective duplex oxide scales, which made it more difficult for the alloy to recover after initiation of the sulfur-induced accelerated corrosion process. The thermodynamic and kinetic factors influencing the accelerated corrosion in the presence of sulfur are discussed. The results suggest that caution is required when assessing compatibility of Ni-based alloys for CO2-based systems when sulfur-based impurities are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Brun, P. Friedman, and R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles, (Woodhead Publishing, 2017).

    Google Scholar 

  2. R. Allam, et al., Energy Procedia 114, 5948 (2017).

    Article  CAS  Google Scholar 

  3. R. P. Oleksak and F. Rouillard, Materials performance in CO2 and supercritical CO2. in Comprehensive Nuclear Materials, 2nd ed, eds. R. J. M. Konings and R. E. Stoller (Elsevier, Oxford, 2020), p. 422. https://doi.org/10.1016/B978-0-12-803581-8.11622-4

    Chapter  Google Scholar 

  4. R. P. Oleksak, G. R. Holcomb, S. Carney, and Ö. N. Doğan, Corrosion Science 206, 110488 (2022).

    Article  CAS  Google Scholar 

  5. B. A. Pint, R. Pillai, M. J. Lance, and J. R. Keiser, Oxidation of Metals 94, 505 (2020).

    Article  Google Scholar 

  6. R. P. Oleksak, J. H. Tylczak, G. R. Holcomb, and Ö. N. Doğan, Corrosion Science 157, 20 (2019).

    Article  CAS  Google Scholar 

  7. B. A. Pint, R. G. Brese, and J. R. Keiser, The Effect of Impurities and Pressure on Oxidation in CO2 at 700°–800 °C, in 2018 NACE CORROSION Conference (NACE International, Phoenix).

  8. P. Huczkowski, D. J. Young, T. Olszewski, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 89, 651 (2018).

    Article  CAS  Google Scholar 

  9. N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit, and G. R. Holcomb, Oxidation of Metals 78, 221 (2012).

    Article  CAS  Google Scholar 

  10. J. Mahaffey, et al., Metallurgical and Materials Transactions A 49, 3703 (2018).

    Article  CAS  Google Scholar 

  11. J. Mahaffey, D. Adam, A. Brittan, M. Anderson, and K. Sridharan, Oxidation of Metals 86, 567 (2016).

    Article  CAS  Google Scholar 

  12. J. Lehmusto, J. Kurley, M. Lance, J. Keiser, and B. A. Pint, Oxidation of Metals 94, 95 (2020).

    Article  CAS  Google Scholar 

  13. B. A. Pint, J. Lehmusto, M. J. Lance, and J. R. Keiser, Materials and Corrosion 70, 1400 (2019).

    Article  CAS  Google Scholar 

  14. K. Li, Y. Zeng, and J.-L. Luo, Corrosion Science 184, 109350 (2021).

    Article  CAS  Google Scholar 

  15. J. P. Shingledecker, S. C. Kung, and I. G. Wright, Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2, (Electric Power Research Institute, 2017), p. 1.

    Google Scholar 

  16. R. P. Oleksak, C. S. Carney, and Ö. N. Doğan, Corrosion Science 215, 111055 (2023).

    Article  CAS  Google Scholar 

  17. R. P. Oleksak, J. H. Tylczak, C. S. Carney, G. R. Holcomb, and Ö. N. Doğan, JOM Journal of the Minerals Metals and Materials Society 70, 1527 (2018).

    Article  CAS  Google Scholar 

  18. R. P. Oleksak, J. H. Tylczak, G. R. Holcomb, and O. N. Dogan, JOM Journal of the Minerals Metals and Materials Society 72, 1822 (2020).

    Article  CAS  Google Scholar 

  19. M. Stroosnijder and W. Quadakkers, High Temperature Technology 4, 141 (1986).

    Article  CAS  Google Scholar 

  20. F. Gesmundo, D. Young, and S. Roy, High Temperature Materials and Processes 8, 149 (1989).

    Article  CAS  Google Scholar 

  21. H. J. Grabke, R. Lobnig, and P. Papaiacovou, Mechanisms of oxidation and sulfidation of high temperature alloys in H2-H2O-H2S mixtures. in Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids, eds. Ø. Johannesen and A. G. Andersen (Elsevier, New York, 1989), p. 1989.

    Google Scholar 

  22. J. Stringer, Mixed oxidant corrosion in coal combustion and conversion systems: manifestations and mechanisms, in High-Temperature Oxidation and Sulphidation Processes (Elsevier, 1990), p. 257.

  23. T. Gheno and B. Gleeson, Oxidation of Metals 84, 567 (2015).

    Article  CAS  Google Scholar 

  24. B. Grégoire, X. Montero, M. C. Galetz, G. Bonnet, and F. Pedraza, Corrosion Science 155, 134 (2019).

    Article  Google Scholar 

  25. R. P. Oleksak, C. S. Carney, G. R. Holcomb, and Ö. N. Doğan, Oxidation of Metals 90, 27 (2017).

    Article  Google Scholar 

  26. R. P. Oleksak, M. Kapoor, D. E. Perea, G. R. Holcomb, and Ö. N. Doğan, NPJ Materials Degradation 2, 25 (2018).

    Article  Google Scholar 

  27. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011).

    Article  CAS  Google Scholar 

  28. D. Caplan and G. Sproule, Oxidation of Metals 9, 459 (1975).

    Article  CAS  Google Scholar 

  29. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals 47, 381 (1997).

    Article  CAS  Google Scholar 

  30. B. Gleeson, Materials Research 7, 61 (2004).

    Article  CAS  Google Scholar 

  31. R. Peraldi, D. Monceau, and B. Pieraggi, Oxidation of Metals 58, 275 (2002).

    Article  CAS  Google Scholar 

  32. C. Sha, L. Yang, J. M. Cairney, J. Zhang, and D. J. Young, Corrosion Science 222, 111410 (2023).

    Article  CAS  Google Scholar 

  33. M. C. Pope and N. Birks, Oxidation of Metals 12, 173 (1978).

    Article  CAS  Google Scholar 

  34. N. Birks, Corrosion mechanisms of metals and alloys in multicomponent oxidative environments, in Symposium on Properties of High Temperature Alloys with Emphasis on Environmental Effects, Las Vegas, NV, USA, eds. Z. A. Foroulis and F. S. Pettit (Electrochemical Society), p. 215.

  35. S.-H. Choi and J. Stringer, Materials Science and Engineering 87, 237 (1987).

    Article  CAS  Google Scholar 

  36. Z.-S. Liu, W.-K. Li, and M.-J. Hung, Journal of the Air & Waste Management Association 64, 1038 (2014).

    Article  CAS  Google Scholar 

  37. B. Li and C. Ma, Energy Procedia 153, 471 (2018).

    Article  CAS  Google Scholar 

  38. M. H. LaBranche and G. J. Yurek, Oxidation of Metals 28, 73 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in support of the U.S. Department of Energy’s Fossil Energy and Carbon Management Advanced Energy Materials Research Program. The Research was executed through the National Energy Technology Laboratory Research and Innovation Center’s Advanced Materials Development Field Work Proposal. We thank Trevor Godell (NETL) for machining the samples, Christopher McKaig (NETL) and Matthew Fortner (NETL) for metallographic preparation of the sample cross-sections, Keith Collins (NETL) for performing EPMA analysis, and Richard Chinn (NETL) for performing XRD analysis.

Funding

This work was funded by the U.S. Department of Energy, National Energy Technology Laboratory, an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Contributions

R.O. performed characterization and thermodynamic analyses, interpreted the results, prepared the figures, and conceived of and wrote the manuscript. J.T. performed the oxidation experiments. L.T. and C.C. performed additional characterization. O.D. proposed the research and provided guidance throughout the project. All authors contributed to discussion of the results and editing of the manuscript.

Corresponding author

Correspondence to Richard P. Oleksak.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksak, R.P., Tylczak, J.H., Teeter, L. et al. High-Temperature Corrosion of Chromia-Forming Ni-Based Alloys in CO2 Containing Impurities. High Temperature Corrosion of mater. 100, 597–620 (2023). https://doi.org/10.1007/s11085-023-10189-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10189-9

Keywords

Navigation