Skip to main content
Log in

Influences of spinal cord temperature changes on reflex discharge and spontaneous activity of spinal motoneurones in pigeons and leguans

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

In pigeons and leguans the temperature dependence of spinal reflexes and spontaneous activity of spinal motoneurones was comparatively investigated. The reflexes were influenced by spinal cord temperature in a similar way in both classes: The amplitude of the reflex generally increased during cooling and the duration of the polysynaptic component increased due to desynchronization and repetitive discharges of the motoneurone pool. The segmental delay was prolonged at lowered spinal cord temperature in both groups of animals. In the leguan there was a linear increase in delay with falling temperature, whereas in the pigeon the latency increased slightly when cooling from 44 °C to 34 °C, but more when cooling further to 25 °C.

The spontaneous activity of spinal motoneurones was differently influenced by spinal temperature changes in pigeons and lizards. In the pigeon, 75% of the neurones increased their spontaneous discharge rates when spinal cord temperature was decreased below normal. 25% increased their activity upon warming. In the leguan, all neurones were barely influenced in the range of 28 °C to 38 °C, whereas increases of discharge frequency were occasionally observed when warming above or cooling below this range.

The similarity of the reflex alterations and the dissimilarity of the changes of spontaneous activity observed in poikilotherms and homeotherms during spinal cord temperature changes suggest a presynaptic temperature dependent component which is present in both classes and a postsynaptic temperature sensitivity which is restricted to the homeothermic class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akker, L.M. van den: An anatomical outline of the spinal cord of the pigeon. Thesis. Leiden: Van Gorcum 1970

    Google Scholar 

  • Andry, M.L., Luttges, M.W., Gamov, R.I.: Temperature effects on spontaneous activity in the garter snake. Exp. Neurol.31, 32–44 (1971)

    Google Scholar 

  • Azzena, G.B., Palmieri, G.: A trigeminal monosynaptic reflex in birds. Exp. Neurol.18, 184–193 (1967)

    Google Scholar 

  • Bando, T.: Synaptic organization in teleost spinal motoneurons. Jpn. J. Physiol.25, 317–331 (1975)

    Google Scholar 

  • Brooks, Ch.McC., Koizumi, K., Malcolm, J.L.: Effects of changes in temperature on reactions of spinal cord. J. Neurophysiol.18, 205–216 (1955)

    Google Scholar 

  • Carpenter, M.B., Stein, B.M., Shriver, J.E.: Central projections of spinal dorsal roots in the monkey. II. Lower thoracic, lumbosacral and coccygeal dorsal roots. Am. J. Anat.123, 75–117 (1968)

    Google Scholar 

  • Gergen, J.A., Gasteiger, E.I.: Effects of temperature on electrical activity of the bullfrog spinal cord. Fed. Proc.16, 194 (1957)

    Google Scholar 

  • Görke, K.: Effect of spinal cord temperature on spontaneous activity of spinal motoneurons in birds and reptiles. Pflügers Arch., Suppl.362, R24 (1976)

    Google Scholar 

  • Görke, K., Pierau, Fr.-K.: Initiation of muscle activity in spinalized pigeons during spinal cord cooling and warming. Pflügers Arch.381, 47–52 (1979)

    Google Scholar 

  • Görke, K., Necker, R., Rautenberg, W.: Neurophysiological investigation of spinal reflexes at different temperatures of the spinal cord in birds and reptiles. Pflügers Arch.359, 269–271 (1975)

    Google Scholar 

  • Grinnell, A.D.: A study of the interaction between motoneurons in the frog spinal cord. J. Physiol.182, 612–648 (1966)

    Google Scholar 

  • Herdman, J.S.: Recovery of shivering in spinal cats. Exp. Neurol.59, 177–189 (1978)

    Google Scholar 

  • Joseph, B.S., Whitlock, D.G.: Central projections of brachial and lumbar dorsal roots in reptiles. J. Comp. Neurol.132, 469–484 (1968)

    Google Scholar 

  • Katz, B., Miledi, R.: The effect of temperature on the synaptic delay at the neuromuscular junction. J. Physiol.181, 656–670 (1965)

    Google Scholar 

  • Kenins, P.: Reflex response to stretch of limb muscles in the Australian blue tongue lizard. Comp. Biochem. Physiol.57A, 383–390 (1977)

    Google Scholar 

  • Kenins, P., McIntyre, A.K.: Responses of single neurones in the lizard spinal cord. Proc. Aust. Physiol. Pharmacol. Soc.3, 32 (1972)

    Google Scholar 

  • Klee, M.R., Pierau, Fr.-K., Faber, D.S.: Temperature effects on resting potential and spike parameters of cat motoneurons. Exp. Brain Res.19, 478–492 (1974)

    Google Scholar 

  • Klussmann, F.W.: Der Einfluß der Temperatur auf die afferente und efferente motorische Innervation des Rückenmarks. Pflügers Arch.305, 295–315 (1969)

    Google Scholar 

  • Klussmann, F.W., Pierau, Fr.-K.: Extrahypothalamic deep body thermosensitivity. In: Essays on temperature regulation. Bligh, J., Moore, R.E., (eds.), pp. 87–104. Amsterdam, London: North Holland 1972

    Google Scholar 

  • Koizumi, K., Ushiyama, J., Brooks, C.McC.: Effect of hypothermia on excitability of spinal neurones. J. Neurophysiol.23, 421–431 (1960)

    Google Scholar 

  • Kolmodin, G.M., Skoglund, C.R.: Potentials within isolated segments of the frog's spinal cord during reflex activation and changes induced by cholinesterase inhibitors and temperature variations. Acta Physiol. Scand.29 (Suppl.) 106, 503–529 (1953)

    Google Scholar 

  • Kosaka, M., Simon, E.: Kältetremor wacher chronisch spinalisierter Kaninchen im Vergleich zum Kältezittern intakter Tiere. Pflügers Arch.302, 333–356 (1968a)

    Google Scholar 

  • Kosaka, M., Simon, E.: Der zentralnervöse spinale Mechanismus des Kältezitterns. Pflügers Arch.302, 357–373 (1968b)

    Google Scholar 

  • Leonhard, R.B., Cohen, D.H.: Spinal terminal fields of dorsal root fibers in the pigeon (Columba livia). J. Comp. Neurol.163, 181–192 (1975)

    Google Scholar 

  • Lloyd, D.P.C.: Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. J. Neurophysiol.6, 293–315 (1943)

    Google Scholar 

  • McGinnis, S.N., Brown, C.W.: Thermal behavior of the greenIguana iguana. Herpetol.22, 189–199 (1966)

    Google Scholar 

  • Necker, R.: Temperature-sensitive ascending neurons in the spinal cord of pigeons. Pflügers Arch.353, 275–286 (1975)

    Google Scholar 

  • Necker, R., Rautenberg, W.: Effect of spinal deafferentation on temperature regulation and spinal thermosensitivity in pigeons. Pflügers Arch.360, 287–299 (1975)

    Google Scholar 

  • Oscarsson, O., Rosen, I., Uddenberg, N.: Organization of ascending tracts in the spinal cord of the duck. Acta Physiol. Scand.59, 143–153 (1963)

    Google Scholar 

  • Pierau, Fr.-K., Klussmann, F.W.: Spinal excitation and inhibition during local spinal cooling and warming. J. Physiol. (Paris)63, 380–382 (1971)

    Google Scholar 

  • Pierau, Fr.-K., Klee, M.R., Klussmann, F.W.: Effect of temperature on postsynaptic potentials of cat spinal motoneurons. Brain Res.114, 21–34 (1976)

    Google Scholar 

  • Rabin, A.: Electrophysiology of spinal motoneurons in the pigeon. Brain Res.84, 351–356 (1975)

    Google Scholar 

  • Rau, B.: Der Einfluß der Rückenmarkstemperatur auf die Entladungsfrequenz und die rekurrente Hemmung tonischer Motoneurone. Thesis, Gießen (1970)

  • Rautenberg. W.: Die Bedeutung der zentralnervösen Thermosensitivität für die Temperaturregulation der Taube. Z. Vergl. Physiol.62, 235–266 (1969)

    Google Scholar 

  • Rautenberg, W.: Die Regulation der Körpertemperatur bei gleich- und wechselwarmen Sauropsiden. Verh. Dtsch. Zool. Ges.1978, 44–58 (1978)

    Google Scholar 

  • Rautenberg, W., Necker, R., May, B.: Thermoregulatory responses of the pigeon to changes of the brain and the spinal cord temperatures. Pflügers Arch.338, 31–42 (1972)

    Google Scholar 

  • Rosenberg, M.E.: Excitation and inhibition of motoneurones in the tortoise. J. Physiol.221, 715–730 (1972)

    Google Scholar 

  • Schäfer. S.S., Schäfer, S.: The role of the primary afferents in the generation of a cold shivering tremor. Exp. Brain. Res.17, 381–393 (1973)

    Google Scholar 

  • Schmidt, I.: Behavioral and autonomic thermoregulation in heat stressed pigeons modified by central thermal stimulation. J. Comp. Physiol.127, 75–87 (1978)

    Google Scholar 

  • Schmidt, R.F.: Presynaptic inhibition in the vertebrate central nervous system. Rev. Physiol. Biochem. Pharmacol.63, 20–101 (1971)

    Google Scholar 

  • Shimamura, M.: Spino-bulbo-spinal and propriospinal reflexes in various vertebrates. Brain Res.64, 141–165 (1973)

    Google Scholar 

  • Simon, E.: Temperature regulation: The spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev. Physiol. Biochem. Pharmacol.71, 1–76 (1974)

    Google Scholar 

  • Simon, E., Iriki, M.: Ascending neurons highly sensitive to variations of spinal cord temperature. J. Physiol. (Paris)63, 415–417 (1971)

    Google Scholar 

  • Simon, E., Klussmann, F.W., Rautenberg, W., Kosaka, M.: Kältezittern bei narkotisierten spinalen Hunden. Pflügers Arch.291, 187–204 (1966)

    Google Scholar 

  • Sprague, J.M., Ha, H.: The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat, and the dendritic organization of the motor nuclei. Prog. Brain Res.11, 120–154 (1964)

    Google Scholar 

  • Suda, I., Koizumi, K., Brooks, Ch.McC.: Analysis of effects of hyperthermia on central nervous system responses. Am. J. Physiol.189, 373–380 (1957)

    Google Scholar 

  • Tebecis, A.K., Phillis, J.W.: Reflex response changes of the toad spinal cord to variations in temperature and pH. Comp. Biochem. Physiol.25, 1035–1047 (1968)

    Google Scholar 

  • Wünnenberg, W., Brück, K.: Studies on the ascending pathways from the thermosensitive region of the spinal cord. Pflügers Arch.321, 233–241 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (SFB 114)

This paper is part of a thesis carried out at the Institut für Tierphysiologie, Ruhr-Universität Bochum. I would like to thank Prof. W. Rautenberg for his friendly encouragement throughout the project. I am also indebted to Dr. R. Necker (Bochum), Dr. J.B. Mercer, Prof. Fr.-K. Pierau and Prof. E. Simon (Bad Nauheim) for helpful discussions and reading the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görke, K. Influences of spinal cord temperature changes on reflex discharge and spontaneous activity of spinal motoneurones in pigeons and leguans. J. Comp. Physiol. 139, 251–259 (1980). https://doi.org/10.1007/BF00657086

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657086

Keywords

Navigation