Skip to main content
Log in

Regulation of Posture and Locomotion in Decerebrate and Spinal Animals

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The experiments reported here showed that decerebrate cats can actively maintain posture during standing and walking. On standing, postural corrections consisted of redistribution of extensor muscle activity in response to perturbations. Correcting reactions during walking included changes in the durations of the swing and transfer phases of the locomotor cycle, modulation of supporting force reactions, and modification of flexor and extensor function. Detailed analysis of correlations between muscle activity, supporting force reactions, and the kinematics of truncal and hindlimb movements showed that the motor system of the decerebrate animal can use a combination of feedback and feedforward to regulate dynamic balance during locomotion. Furthermore, balance was rapidly restored after impairment due to stumbling or perturbing influences. The intraspinal neural networks and somatosensory afferent input from the limbs can effectively regulate balance during walking and standing, without involvement of the vestibular and visual systems. After interruption of the connection with the motor centers of the stem and forebrain in decerebrate and spinal animals, these networks were in a suppressed state but could be activated by epidural and sensory stimulation substituting for tonic supraspinal drive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Gerasimenko, I. A. Lavrov, I. N. Bogacheva, et al., “Characteristics of the formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord,” Ros. Fiziol. Zh., 89, 1046–1057 (2003).

    Google Scholar 

  2. V. S. Gurfinkel’, Ya. M. Kots, and M. L. Shik, Regulation of Posture in Humans, Nauka, Moscow (1965).

    Google Scholar 

  3. P. E. Musienko, I. N. Bogacheva, and Yu. P. Gerasimenko, “Significance of peripheral feedback in generating stepping movements in epidural stimulation of the spinal cord,” Ros. Fiziol. Zh., 95, No. 12, 1407–1420 (2005).

    Google Scholar 

  4. P. E. Musienko, N. V. Pavlova, V. A. Selionov, and Yu. P. Gerasimenko, “Locomotion induced by epidural stimulation in decerebrate cats after spinal cord lesions,” Biofizika, 54, No. 2, 293–300 (2009).

    CAS  PubMed  Google Scholar 

  5. M. L. Shik, F. V. Severin, and G. N. Orlovskii, “Control of walking and running by electrical stimulation of the midbrain,” Biofizika, 11, 659–666 (1966).

    CAS  PubMed  Google Scholar 

  6. I. N. Beloozerova, P. V. Zelenin, L. B. Popova, et al., “Postural control in the rabbit maintaining balance on the tilting platform,” J. Neurophysiol., 90, 3783–3793 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. I. N. Beloozerova, M. G. Sirota, G. N. Orlovsky, and T. G. Deliagina, “Activity of pyramidal tract neurons in the cat during postural corrections,” J. Neurophysiol., 93, 1831–1844 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. N. Bernstein, The Coordination and Regulation of Movements, Pergamon Press, Oxford (1967).

    Google Scholar 

  9. E. Bizzi, P. Saltiel, and M. Tresch, “Modular organization of motor behavior,” Z. Naturforsch., 35, No. 7–8, 510–517 (1998).

    Google Scholar 

  10. T. G. Deliagina, G. N. Orlovsky, P. V. Zelenin, and I. N. Beloozerova, “Neural bases of postural control,” Physiology, 21, 216–225 (2006).

    Article  PubMed  Google Scholar 

  11. V. R. Edgerton, R. D. de Leon, S. J. Harkema, et al., “Retraining the injured spinal cord,” J. Physiol., 533, 15–22 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer, New York (1995).

    Google Scholar 

  13. Y. Gerasimenko, P. Musienko, I. Bogacheva, et al., “Propriospinal bypass of the serotonergic system that can facilitate stepping,” J. Neurosci., 29, 5681–5689 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, “Convergent force fields organized in the frog’s spinal cord,” J. Neurosci., 13, No. 2, 467–491 (1993).

    CAS  PubMed  Google Scholar 

  15. J. P. Gossard, R. M. Brownstone, I. Barajon, and H. Hultborn, “Transmission in locomotor-related group 1b pathway from hindlimb extensor muscles in the cat,” Exp. Brain Res., 98, 213–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. L. Guevremont, C. G. Renzi, J. A. Norton, et al., “Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation,” IEEE Trans. Neural. Syst. Rehabil. Eng., 14, No. 3, 266–272 (2006).

    Article  PubMed  Google Scholar 

  17. J. A. Hodgson, R. R. Roy, R. de Leon, et al., “Can the mammalian lumbar spinal cord learn a motor task?” Med. Sci. Sports Exerc., 26, 1491–1497 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. A. L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control balance in walking,” Hum. Mov. Sci., 27, 112–125 (2008).

    Article  PubMed  Google Scholar 

  19. F. Horak and J. Macpherson, “Postural orientation and equilibrium,” in: Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems, J. Shepard and L. Rowel (eds.), Oxford University Press, New York (1996), pp. 255–292.

    Google Scholar 

  20. T. Iwahara, Y. Atsuta, R. Garsia-Rill, and R. Skinner, “Spinal cord stimulation-induced locomotion in adult cat,” Brain Res. Bull., 28, 99–105 (1991).

    Article  Google Scholar 

  21. A. Karayannidou, P. V. Zelenin, G. N. Orlovsky, et al., “Maintenance of lateral stability during standing and walking in the cat,” J. Neurophysiol., 101, 8–19 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. A. Karayannidou, I. N. Beloozerova, P. V. Zelenin, et al., “Activity of pyramidal tract neurons in the cat during standing and walking on an inclined plane,” J. Physiol., 587, 3795–3811 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. D. B. Lockart and L. H. Ting, “Optimal sensorimotor transformations for balance,” Nat. Neurosci., 10, 1329–1336 (2007).

    Article  Google Scholar 

  24. V. F. Lyalka, P. V. Zelenin, A. Karayannidou, et al., “Impairment and recovery of postural control in rabbits with spinal cord lesions,” J. Neurophysiol., 94, No. 6, 3677–3690 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. J. M. Macpherson, J. Fung, and R. Jacobs, “Postural orientation, equilibrium, and the spinal cord,” Adv. Neurol., 72, 227–232 (1997).

    CAS  PubMed  Google Scholar 

  26. R. Magnus, Körperstellung [Body Posture], Springer-Varlag, Berlin (1924).

    Book  Google Scholar 

  27. R. Magnus, “Some results of studies in physiology of posture,” Lancet, 211, 531–536 (1926).

    Google Scholar 

  28. J. Massion, “Postural control system,” Curr. Opin. Neurobiol., 4, 877–888 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. J. E. Misiaszek, “Control of frontal plane motion of the hindlimbs in the unrestrained walking cat,” J. Neurophysiol., 96, 1816–1828 (2006).

    Article  PubMed  Google Scholar 

  30. S. Mori, “Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats,” Progr. Neurobiol., 28, 161–195 (1987).

    Article  CAS  Google Scholar 

  31. S. Mori, T. Sakamoto, Y. Ohta, et al., “Site-specific postural and locomotor changes evoked in awake, freely moving cats by stimulating the brainstem,” Brain Res., 515, 66–74 (1989).

    Article  Google Scholar 

  32. P. E. Musienko, P. V. Zelenin, V. F. Lyalka, et al., “Postural performance in decerebrated rabbit,” Behav. Brain Res., 190, 124–134 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. P. Musienko, R. van den Brand, O. Maerzendorfer, et al., “Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury,” IEEE Trans. Biomed. Eng., 56, 3707–2711 (2009).

    Article  Google Scholar 

  34. P. E. Musienko, P. V. Zelenin, G. N. Orlovsky, and T. G. Deliagina, “Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits,” J. Neurophysiol., 103, 1080–1092 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. P. Musienko, G. Courtine, J. E. Tibbs, et al., “Somatosensory control of balance during locomotion in decerebrated cat,” J. Neurophysiol., 107, No. 8, 2072–2082 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  36. V. K. Mushahwar, D. F. Collins, and A. Prochazka, “Spinal cord microstimulation generates functional limb movements in chronically implanted cats,” Exp. Neurol., 163, No. 2, 422–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. G. N. Orlovsky, T. G. Deliagina, and S. Grillner, Neuronal Control of Locomotion. From Mollusk to Man, Oxford University Press (1999).

  38. T. D. M. Roberts, Neurophysiology of Postural Mechanisms, Butterworths, London (1978).

    Google Scholar 

  39. P. F. Smith and I. S. Curtois, “Mechanisms of recovery following unilateral labyrinthectomy: a review,” Brain Res. Rev., 14, No. 2, 155–180 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. M. C. Tresch and E. Bizzi, “Responses to microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous systems,” Exp. Brain Res., 129, 401–416 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. M. C. Tresch, P. Saltel, and E. Bizzi, “The construction of movement by the spinal cord,” Nat. Neurosci., 2, No. 2, 162–(1967). (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Musienko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 3, pp. 392–405, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musienko, P.E., Gorskii, O.V., Kilimnik, V.A. et al. Regulation of Posture and Locomotion in Decerebrate and Spinal Animals. Neurosci Behav Physi 45, 229–237 (2015). https://doi.org/10.1007/s11055-015-0062-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0062-3

Keywords

Navigation