Skip to main content
Log in

Calorimetric and vibrational studies of LiHg3, CdHg3, and Hg

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the specific heat of the amalgam LiHg 3 are reported between approximately 7 and 300 K, and of CdHg 3 between approximately 10 and 300 K. The results are believed to be correct within uncertainty limits of ±3% at 300 K, rising to approximately ±12% at the lowest temperatures. Before seeking the influence of the addition of lithium and cadmium atoms to an assembly of mercury atoms, the quasiharmonic approximation has been applied to earlier experimental thermodynamic data to calculate the maximum frequencies v D (n) of the Debye distributions having the samenth moments as the crystalline mercury lattice for − 3 ≤n ≤ 6. This was followed by assessments of high-temperature limiting values of the Debye characteristic temperatures, which were subsequently used to express results at finite temperatures in reduced form for comparative purposes. From a survey of these and structural data it is concluded that: (i) vibrations parallel to the unique axis of each structure are probably more important than those at right angles in determining the cohesive forces; (ii) increasing the mean mass of the constituent atoms of the lattice results in an overall reduction of the vibrational frequencies; (iii) such an increase of mass is also accompanied by a reduction of the temperature at which explicitly temperature-dependent anharmonic effects assume significant proportions; and (iv) the temperature dependences of these effects resemble one another in the three lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Brade and B. Yates,J. Phys. C 4, 417 (1971).

    Google Scholar 

  2. A. J. Kirkham and B. Yates,Cryogenics 8, 381 (1968).

    Google Scholar 

  3. A. J. Kirkham and B. Yates,J. Phys. C 1, 1162 (1968).

    Google Scholar 

  4. R. M. Brade and B. Yates,J. Phys. C 4, 876 (1971).

    Google Scholar 

  5. C. S. Barrett,Acta Cryst. 10, 58 (1957).

    Google Scholar 

  6. R. H. Busey and W. F. Giauque,J. Am. Chem. Soc. 75, 806 (1953).

    Google Scholar 

  7. A. D. Misener,Proc. Roy. Soc. (London)A174, 262 (1940).

    Google Scholar 

  8. P. L. Smith and N. M. Wolcott,Phil. Mag. 1, 854 (1956).

    Google Scholar 

  9. V. J. Johnson,Properties of Materials at Low Temperatures (Phase 1), A Compendium (Pergamon Press, London, 1961), Part II, Chap. 4, p. 122.

    Google Scholar 

  10. W. T. Berg and J. A. Morrison,Proc. Roy. Soc. (itLondon)A242, 467 (1957).

    Google Scholar 

  11. A. G. Crocker and G. A. A. M. Singleton,Phys. Stat. Solidi 6, 635 (1971).

    Google Scholar 

  12. E. Grüneisen and O. Sckell,Ann. Physik 19, 387 (1934).

    Google Scholar 

  13. D. M. Hill,Phys. Rev. 48, 620 (1935).

    Google Scholar 

  14. O. Sckell,Ann. Physik 6, 932 (1930).

    Google Scholar 

  15. E. S. R. Gopal,Specific Heats at Low Temperatures (Heywood, London, 1966).

    Google Scholar 

  16. B. Yates,Thermal Expansion (Plenum Press, New York, 1972).

    Google Scholar 

  17. P. A. Giguère and M. Boisvert,Tables des Fonctions Thermodynamiques de Debye (Les Presses de l'Université Laval, Québec, 1962).

    Google Scholar 

  18. C. Domb and L. Salter,Phil. Mag. 43, 1083 (1952).

    Google Scholar 

  19. T. H. K. Barron, W. T. Berg, and J. A. Morrison,Proc. Roy. Soc. (London)A242, 478 (1957).

    Google Scholar 

  20. A. C. Bailey and B. Yates,Proc. Phys. Soc. 91, 390 (1967).

    Google Scholar 

  21. E. Grüneisen and H. Hoyer,Ann. Physik 22, 663 (1935).

    Google Scholar 

  22. A. D. Redmond and B. Yates,J. Phys. C 5, 1589 (1972).

    Google Scholar 

  23. N. Waterhouse and B. Yates,Cryogenics 8, 267 (1968).

    Google Scholar 

  24. G. J. Zukowsky,Z. Anorg. Chem. 71, 403 (1911).

    Google Scholar 

  25. G. Grube and W. Wolf,Z. Elektrochem. 41, 675 (1935).

    Google Scholar 

  26. E. Zintl and A. Schneider,Z. Elektrochem. 41, 771 (1935).

    Google Scholar 

  27. R. W. Munn,Advan. Phys. 18, 515 (1969).

    Google Scholar 

  28. A. C. Bailey and B. Yates,J. Appl. Phys. 41, 5088 (1970).

    Google Scholar 

  29. B. Yates, R. F. Cooper, and A. F. Pojur,J. Phys. C 5, 1046 (1972).

    Google Scholar 

  30. E. Maey,Z. Physik Chem. 29, 119 (1899).

    Google Scholar 

  31. B. Wood,Chem. News 6, 135 (1862).

    Google Scholar 

  32. R. F. Mehl,J. Am. Chem. Soc. 50, 381 (1928).

    Google Scholar 

  33. K. Schubert, U. Rösler, W. Mahler, E. Dörre, and W. Schütt,Z. Metallkunde 45, 643 (1954).

    Google Scholar 

  34. E. Maey,Z. Physik Chem. 50, 200 (1905).

    Google Scholar 

  35. K. Bornemann and G. Rauschenplat,Metallurgie 9, 473 (1912).

    Google Scholar 

  36. A. Larsen,Ann. Physik 1, 123 (1900).

    Google Scholar 

  37. A. C. Bailey and B. Yates,Phil. Mag. 16, 1241 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingham, J.L., Yates, B. Calorimetric and vibrational studies of LiHg3, CdHg3, and Hg. J Low Temp Phys 11, 117–130 (1973). https://doi.org/10.1007/BF00655040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655040

Keywords

Navigation