Skip to main content
Log in

Thermodynamic properties of the layered superconductor 2H-NbSe2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The specific heat in the normal and superconducting states of single crystals of the transition metal dichalcogenide superconductor 2H-NbSe 2 was measured from 1.7 to 9 K by use of a thermal relaxation method. The thermodynamic critical field and the specific heat behavior are different from those predicted by the BCS theory. The anisotropy and strong coupling effects in the thermodynamic properties are made evident through comparison with the Clem-Sheahen-Gubser relations, which take account of these effects near T c and 0 K. A simple semiempirical model is proposed to explain the temperature dependences of the thermodynamic critical field and the superconducting electronic specific heat. Under the assumption of a spheroidal Fermi surface based on the tight-binding approximation, the model takes into account effects of the anisotropy and the strong coupling interaction in the expression for the energy gapΔ k (t)=Δ 0 (t)(1+ε 2 cos 2 ϑ). The strong coupling parameter 2Δ 0 (0)/K B T c and the energy gap anisotropy parameter ε 2 are the only two adjustable parameters. The thermodynamic behavior deduced from the model gives good agreement with experimental results for values of 2Δ 0 (0)/k B T c⋍5.0 and ε 2 ≃-−0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Muto, N. Toyota, K. Noto, and A. Hoshi,Phys. Lett. 45A, 99 (1973); Y. Muto, N. Toyota, H. Nakatsuji, N. Kobayashi, and K. Noto, inProc. 14th Int. Conf. Low Temp. Phys. (1975), Vol. 2, p. 89; N. Toyota, H. Nakatsuji, K. Noto, A. Hoshi, N. Kobayashi, Y. Muto, and Y. Onodera,J. Low Temp. Phys. 25, 483 (1976).

    Google Scholar 

  2. R. C. Morris, R. V. Coleman, and R. Bhandari,Phys. Rev. B 5, 895 (1972).

    Google Scholar 

  3. P. de Trey, S. Gygax, and J.-P. Jan,J. Low Temp. Phys. 11, 421 (1973).

    Google Scholar 

  4. N. Kobayashi, K. Noto, and Y. Muto, inProc. 14th Int. Conf. Low Temp. Phys. (1975), Vol. 2, p. 93;Solid State Comm. 20, 1081 (1976).

  5. P. Garoche, J. J. Veyssié, P. Manuel, and P. Molinié,Solid State Comm. 19, 455 (1976).

    Google Scholar 

  6. R. A. Klemm, A. Luther, and M. R. Beasley,Phys. Rev. B 12, 877 (1975); R. A. Klemm, M. R. Beasley, and A. Luther,J. Low Temp. Phys. 16, 607 (1974).

    Google Scholar 

  7. L. N. Bulaevskii,Zh. Eksp. Teor. Fiz. 64, 2241;65, 1278 (1973) [Sov. Phys.—JETP 37, 1133 (1973);38, 634 (1974)].

  8. K. Takanaka,Phys. Stat. Sol. (b)68, 623 (1975).

    Google Scholar 

  9. L. P. Gor'kov and J. K. Melik-Barkhudarov,Zh. Eksp. Teor. Fiz. 45, 1493 (1963) [Sov. Phys.—JETP 18, 1031 (1964)].

    Google Scholar 

  10. J. R. Clem,Ann. Phys. 40, 268 (1966).

    Google Scholar 

  11. T. P. Sheahen,Phys. Rev. 149, 370 (1966).

    Google Scholar 

  12. D. U. Gubser,Phys. Rev. B 6, 827 (1972).

    Google Scholar 

  13. N. Toyota, M.Sc. Thesis, Tohoku Univ. (1974), unpublished.

  14. P. F. Sullivan and G. Seidel,Phys. Rev. 173, 679 (1968).

    Google Scholar 

  15. R. Bachmann, F. J. DiSalvo, T. H. Geballe, R. L. Green, R. E. Howard, C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H.-U. Thomas, and R. B. Zubeck,Rev. Sci. Instr. 43, 205 (1972).

    Google Scholar 

  16. K. Noto, N. Kobayashi, and Y. Muto,Japan. J. Appl. Phys. 15, 2449 (1976).

    Google Scholar 

  17. M. H. Van Maaren and H. B. Harland,Phys. Lett. 29A, 571 (1969).

    Google Scholar 

  18. R. E. Schwall, G. R. Stewart, and T. H. Geballe,J. Low Temp. Phys. 22, 557 (1976).

    Google Scholar 

  19. A. J. Bevolo and H. R. Shanks,J. Appl. Phys. 45, 4644 (1974).

    Google Scholar 

  20. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  21. J. Neighbor, J. F. Cochran, and C. A. Shiffman,Phys. Rev. 155, 384 (1967).

    Google Scholar 

  22. D. K. Finnemore and D. E. Mapother,Phys. Rev. 140, A507 (1965).

    Google Scholar 

  23. B. J. C. van der Hoeven and P. H. Keesom,Phys. Rev. 135, A631 (1964).

    Google Scholar 

  24. H. A. Leupold and H. A. Boorse,Phys. Rev. 134, A1322 (1964).

    Google Scholar 

  25. B. Mühlschlegel,Z. Phys. 155, 313 (1959).

    Google Scholar 

  26. B. B. Goodman,Compt. Rend. 244, 2899 (1957).

    Google Scholar 

  27. B. P. Clayman,Can. J. Phys. 50, 3193 (1972).

    Google Scholar 

  28. B. P. Clayman and R. F. Frindt,Solid State Comm. 9, 1881 (1971).

    Google Scholar 

  29. R. C. Morris and R. V. Coleman,Phys. Lett. 43A, 11 (1973).

    Google Scholar 

  30. W. L. McMillan,Phys. Rev. 167, 331 (1968).

    Google Scholar 

  31. L. F. Matheiss,Phys. Rev. B 8, 3719 (1973).

    Google Scholar 

  32. D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).

    Google Scholar 

  33. W. E. Lawrence and S. Doniach, inProc. 12th Int. Conf. Low Temp. Phys. (1971), p. 361.

  34. H. Padamsee, J. E. Neighbor, and C. A. Shiffman,J. Low Temp. Phys. 12, 387 (1973).

    Google Scholar 

  35. J. E. Graebner and M. Robbins,Phys. Rev. Lett. 36, 422 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a Grant in Aid for Special Research from the Ministry of Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, N., Noto, K. & Muto, Y. Thermodynamic properties of the layered superconductor 2H-NbSe2 . J Low Temp Phys 27, 217–244 (1977). https://doi.org/10.1007/BF00654647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654647

Keywords

Navigation