Skip to main content
Log in

Thermal conductivity of the Kondo superconductor Zn-Mn

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity in bulk samples of pure Zn and the Kondo alloy Zn-Mn have been measured in the temperature range 0.360 to about 1.0 K for concentrations 2.7, 6.0, 8.4, 10.0, and 11.7 ppm Mn. Our results for the depression of the superconducting to normal state transition temperature (T c) with Mn concentration and for the temperature dependence of the thermal conductivity of pure Zn agree with the results obtained by other workers. The ratio of the thermal conductances in the superconducting and normal states has been quantitatively compared with the Bardeen-Rickayzen-Tewordt and Ambegaokar-Griffin theories. We found agreement between the Ambegaokar-Griffin theory and experiment at all temperatures for Mn concentrations lower than 10.0 ppm and discrepancy between theory and experiment in the 10.0 ppm and 11.7-ppm samples. In the latter specimens the measured conductance ratio was greater than the theoretical predictions. For these two samplesT c occurs at about the temperature where ordering (impurity-impurity interactions) is observed in the normal state. We have analyzed our measurements using those solutions of the Kondo problem in superconductors dealing mainly with the existence of bound states in the energy gap, as well as available theories on the effects of impurity-impurity interactions. We have concluded that our results can be qualitatively understood using the ideas of Fowler and Maki and of Zittartz and Müller-Hartmann which give a bound state in the energy gap. It appears that the growth of the impurity band and spin ordering (impurity-impurity interactions) are intrinsically related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Smith,J. Low Temp. Phys. 5, 683 (1971).

    Google Scholar 

  2. R. S. Newrock, B. Serin, J. Vig, and G. Boato,J. Low Temp. Phys. 5, 701 (1971).

    Google Scholar 

  3. M. Fowler and K. Maki,Phys. Rev. B 1, 181 (1970).

    Google Scholar 

  4. J. Zittartz and E. Müller-Hartmann,Z. Physik 232, 11 (1970).

    Google Scholar 

  5. E. Müller-Hartmann and J. Zittartz,Z. Physik 234, 58 (1970).

    Google Scholar 

  6. J. Zittartz and E. Müller-Hartmann,Z. Physik 237, 419 (1970).

    Google Scholar 

  7. E. Müller-Hartmann and J. Zittartz,Phys. Rev. Letters 26, 428 (1971).

    Google Scholar 

  8. J. D. Marsh,Phys. Letters 33A, 207 (1970).

    Google Scholar 

  9. G. Boato, M. Bugo, and C. Rizzuto,Nuovo Cimento 45, 226 (1966).

    Google Scholar 

  10. G. Boato, G. Gallinaro, and C. Rizzuto,Rev. Mod. Phys. 36, 162 (1964);Phys. Rev. 148, 353 (1966).

    Google Scholar 

  11. S. Y. Hsieh and D. H. Sánchez, “Calibration of Germaniun Thermometers between 0.080 K and 4.2K,” Rutgers University (available on request from the authors).

  12. J. F. Cochran, C. A. Schiffman, and J. F. Neighbor,Rev. Sci. Instr. 37, 499 (1966).

    Google Scholar 

  13. R. Soulen, PhD. Thesis, Rutgers University (1966).

  14. W. Worobey, PhD. Thesis, Rutgers University (1965).

  15. T. B. Greenslade, PhD. Thesis, Rutgers University (1966).

  16. A. C. Anderson,Rev. Sci. Instr. 40, 1502 (1969).

    Google Scholar 

  17. J. C. Wheatley, O. E. Vilches, and W. R. Abel,Physics 4, 1 (1968).

    Google Scholar 

  18. J. M. Costignola, F. de la Cruz, M. E. de la Cruz, and R. P. Platzeck,Rev. Sci. Instr. 38, 87 (1967).

    Google Scholar 

  19. Y. Muto, Y. Tawara, Y. Shibuya, and T. Fukuroi,J. Phys. Soc. Japan 14, 380 (1959). Y. Muto,Sci. Repts. Tohoku Univ., First Series 13, 1 (1961).

    Google Scholar 

  20. N. V. Zavaritskii,Zh. Eksperim. i Teor. Fiz. 34, 1116 (1958) [English transl.,Soviet Phys.— JETP 7, 773 (1958)];Zh. Eksperim. i Teor. Fiz. 39, 1193 (1960) [English transl.,Soviet Phys.—JETP 12, 831 (1961)].

    Google Scholar 

  21. C. Kittel,Introduction to Solid State Physics (Wiley, New York, 1966), p. 222.

    Google Scholar 

  22. J. Bardeen, G. Rickayzen, and L. Tewordt,Phys. Rev. 113, 982 (1959).

    Google Scholar 

  23. E. D. Ramos and D. H. Sánchez, “Tabulation of the BRT function for the thermal conductivity and the AG function for the depression ofT c,” Rutgers University (available on request from the authors; a short version is inCryogenics 14, 341 (1974)).

  24. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  25. V. Ambegaokar and A. Griffin,Phys. Rev. 137, A1151 (1965).

  26. A. A. Abrikosov and L. P. Gor'kov,Zh. Eksperim. i Teor. Fiz. 39, 1781 (1960) [English transl.,Soviet Phys.—JETP 12, 1243 (1961)]

    Google Scholar 

  27. E. A. Lynton,Superconductivity (Methuen, London, 1962), pp. 93, 125.

    Google Scholar 

  28. R. Meservey and B. B. Schwartz,Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 1, p. 141.

    Google Scholar 

  29. R. D. Parks, inProc. McGill Advanced Summer Study Institute on Superconductivity, June 1968, P. R. Wallace, ed. (Gordon and Breach, New York, 1969), Vol. 2, p. 623.

  30. K. H. Bennemann and F. M. Mueller,Phys. Rev. 176, 546 (1968).

    Google Scholar 

  31. W. R. Decker and D. K. Finnemore,Phys. Rev. 172, 430 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been submitted as partial fulfillment for the degree of Doctor of Philosophy at Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, D.H. Thermal conductivity of the Kondo superconductor Zn-Mn. J Low Temp Phys 17, 101–120 (1974). https://doi.org/10.1007/BF00654547

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654547

Keywords

Navigation