Skip to main content
Log in

Phenomenology of 63Cu Nuclear Relaxation in Cuprate Superconductors

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nuclear relaxation is an important thermodynamic probe of electronic excitations, in particular in conducting and superconducting systems. Here, an empirical phenomenology based on all available literature data for planar Cu in hole-doped cuprates is developed. It is found that most of the seemingly different relaxation rates among the systems are due to a temperature-independent anisotropy that affects mostly measured 1/T1∥, the rate with an external magnetic field along the crystal c-axis, while 1/T1⊥ is largely independent on doping and material above the critical temperature of superconductivity (Tc). This includes very strongly overdoped systems that show Fermi liquid behavior and obey the Korringa law. Below Tc, the relaxation rates are similar, as well, if plotted against the reduced temperature T/Tc. Thus, planar Cu nuclear relaxation is governed by a simple, dominant mechanism that couples the nuclei with varying anisotropy to a rather ubiquitous bath of electronic excitations that appear Fermi liquid-like irrespective of doping and family. In particular, there is no significant enhancement of the relaxation due to electronic spin fluctuations, different from earlier conclusions. Only the La2−xSrxCuO4 family appears to be an outlier as additional relaxation is present; however, the anisotropy remains temperature independent. Also systems with very low doping levels, for which there is a lack of data, may behave differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Slichter, C.P.: Principles of Magnetic Resonance, 3rd edn. Springer, Berlin (1990)

    Book  Google Scholar 

  2. Heitler, W., Teller, E.: Proc. R. Soc. A Math. Phys. Eng. Sci. 155, 629 (1936)

    ADS  Google Scholar 

  3. Korringa, J.: Physica 16, 601 (1950)

    Article  ADS  Google Scholar 

  4. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hebel, L.C., Slichter, C.P.: Phys. Rev. 113, 1504 (1959)

    Article  ADS  Google Scholar 

  6. Bednorz, J.G., Müller, K.A.: Z. Phys. B Condens. Matter 193, 189 (1986)

    Article  ADS  Google Scholar 

  7. Kotegawa, H. , Ishida, K., Kitaoka, Y., Muranaka, T., Akimitsu, J.: Phys. Rev. Lett. 87(12), 127001 (2001)

    Article  ADS  Google Scholar 

  8. Silbernagle, B.G., Weger, M., Clark, W.G., Wernick, J.H.: Phys. Rev. 153, 535 (1967)

    Article  ADS  Google Scholar 

  9. Rybicki, D., Haase, J., Greven, M., Yu, G., Li, Y., Cho, Y., Zhao, X.: J. Supercond. Nov. Magn. 22, 179 (2009)

    Article  Google Scholar 

  10. Jurkutat, M., Haase, J., Erb, A.: J. Supercond. Nov. Magn. 26, 2685 (2013)

    Article  Google Scholar 

  11. Reichardt, S., Jurkutat, M., Guehne, R., Kohlrautz, J., Erb, A., Haase, J.: Condens. Matter 3(3), 23 (2018)

    Article  Google Scholar 

  12. Singer, P.M., Hunt, A.W., Imai, T.: Phys. Rev. Lett. 88, 047602 (2002)

    Article  ADS  Google Scholar 

  13. Hunt, A.W., Singer, P.P.M., Cederström, A.F., Imai, T.: Phys. Rev. B 64, 134525 (2001)

    Article  ADS  Google Scholar 

  14. Walstedt, R.E., Warren, W.W., Bell, R.F., Brennert, G.F., Espinosa, G.P., Remeika, J.P., Cava, R.J., Rietman, E.A.: Phys. Rev. B 36(10), 5727 (1987)

    Article  ADS  Google Scholar 

  15. Markert, J.T., Noh, T.W., Russek, S.E., Cotts, R.M.: Solid State Commun. 63(9), 847 (1987)

    Article  ADS  Google Scholar 

  16. Kitaoka, Y., Hiramatsu, S., Kondo, T., Asayama, K.: J. Phys. Soc. Jpn. 57(1), 30 (1988)

    Article  ADS  Google Scholar 

  17. Shimizu, T., Yasuoka, H., Imai, T., Tsuda, T., Takabatake, T., Nakazawa, Y., Ishikawa, M.: J. Phys. Soc. Jpn. 57(7), 2494 (1988)

    Article  ADS  Google Scholar 

  18. Mali, M., Brinkmann, D., Pauli, L., Roos, J., mann, H., Hulliger, J.: Phys. Lett. A 124(1-2), 112 (1987)

    Article  ADS  Google Scholar 

  19. Walstedt, R.E., Warren, W.W., Bell, R.F., Brennert, G.F., Espinosa, G.P., Cava, R.J., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. B 38(13), 9299 (1988)

    Article  ADS  Google Scholar 

  20. Walstedt, R.E., Warren, W.W.: Phys. B: Condens. Matter 163(1), 75 (1990)

    Article  ADS  Google Scholar 

  21. Pennington, C.H., Durand, D.J., Zax, D.B., Slichter, C.P., Rice, J.P., Ginsberg, D.M.: Phys. Rev. B 37(1), 7944 (1988)

    Article  ADS  Google Scholar 

  22. Imai, T., Shimizu, T., Yasuoka, H., Ueda, Y., Kosuge, K., Phys, J.: Soc. Jpn. 57(7), 2280 (1988)

    Article  Google Scholar 

  23. Pennington, C.H., Durand, D.J., Slichter, C.P., Rice, J.P., Bukowski, E.D., Ginsberg, D.M.: Phys. Rev. B 39, 2902 (1989)

    Article  ADS  Google Scholar 

  24. Takigawa, M., Hammel, P.C., Heffner, R.H., Fisk, Z.: Phys. Rev. B 39(10), 7371 (1989)

    Article  ADS  Google Scholar 

  25. Takigawa, M., Hammel, P.C., Heffner, R.H., Fisk, Z., Smith, J.L., Schwarz, R.B.: Phys. Rev. B 39, 300 (1989)

    Article  ADS  Google Scholar 

  26. Walstedt, R.E., Warren, W.W., Bell, R.F., Espinosa, G.P.: Phys. Rev. B 40(4), 2572 (1989)

    Article  ADS  Google Scholar 

  27. Barrett, S.E., Martindale, J.A., Durand, D.J., Pennington, C.H., Slichter, C.P., Friedmann, T.A., Rice, J.P., Ginsberg, D.M.: Phys. Rev. Lett. 66(1), 108 (1991)

    Article  ADS  Google Scholar 

  28. Slichter, C.P.: In: Schrieffer, J.R., Brooks, J.S. (eds.) Handbook of High-Temperature Superconductivity, pp 215–256. Springer, New York (2007)

  29. Haase, J., Goh, S.K., Meissner, T., Alireza, P.L., Rybicki, D.: Rev. Sci. Instrum. 80(7), 073905 (2009)

    Article  ADS  Google Scholar 

  30. Meissner, T., Goh, S.K., Haase, J., Williams, G. V.M., Littlewood, P.B.: Phys. Rev. B 83, 220517(R) (2011)

    Article  ADS  Google Scholar 

  31. Haase, J., Rybicki, D., Slichter, C.P., Greven, M., Yu, G., Li, Y., Zhao, X.: Phys. Rev. B 85, 104517 (2012)

    Article  ADS  Google Scholar 

  32. Rybicki, D., Kohlrautz, J., Haase, J., Greven, M., Zhao, X., Chan, M.K., Dorow, C.J., Veit, M.J.: Phys. Rev. B 92, 081115(R) (2015)

    Article  ADS  Google Scholar 

  33. Haase, J., Jurkutat, M., Kohlrautz, J.: Condens. Matter 2(2), 16 (2017)

    Article  Google Scholar 

  34. Itoh, Y., Machi, T., Fukuoka, A., Tanabe, K., Yasuoka, H.: J. Phys. Soc. Jpn. 65, 3751 (1996)

    Article  ADS  Google Scholar 

  35. Auler, T., Horvatić, M., Gillet, J.A., Berthier, C., Berthier, Y., Carretta, P., Kitaoka, Y., Ségransan, P., Henry, J.Y.: Phys. C:, Supercond. 313(3), 255 (1999)

    Article  ADS  Google Scholar 

  36. Zimmermann, H., Mali, M., Bankay, M., Brinkmann, D.: Phys. C:, Supercond. 185–189, 1145 (1991)

    Article  ADS  Google Scholar 

  37. Magishi, K., Kitaoka, Y., Zheng, G.Q., Asayama, K., Kondo, T., Shimakawa, Y., Manako, T., Kubo, Y.: Phys. Rev. B 54(14), 10131 (1996)

    Article  ADS  Google Scholar 

  38. Fujiwara, K., Kitaoka, Y., Ishida, K., Asayama, K., Shimakawa, Y., Manako, T., Kubo, Y.: Phys. C:, Supercond. 184(4-6), 207 (1991)

    Article  ADS  Google Scholar 

  39. Zheng, G.Q., Kitaoka, Y., Asayama, K., Hamada, K., Yamauchi, H., Tanaka, S.: Phys. C:, Supercond. 260(3–4), 197 (1996)

    Article  ADS  Google Scholar 

  40. Gerashenko, A., Piskunov, Y., Mikhalev, K., Ananyev, A., Okulova, K., Verkhovskii, S., Yakubovskii, A., Shustov, L., Trokiner, A.: Phys. C:, Supercond. 328(3-4), 163 (1999)

    Article  ADS  Google Scholar 

  41. Itoh, Y., Machi, T., Yamamoto, A.: Phys. Rev. B 95, 094501 (2017)

    Article  ADS  Google Scholar 

  42. Magishi, K., Kitaoka, Y., Zheng, G.Q., Asayama, K., Tokiwa, K., Iyo, A., Ihara, H.: J. Phys. Soc. Japan 64(12), 4561 (1995)

    Article  ADS  Google Scholar 

  43. Gippius, A.A., Antipov, E.V., Hoffmann, W., Lüders, K., Buntkowsky, G.: Phys. Rev. B 59(1), 654 (1999)

    Article  ADS  Google Scholar 

  44. Tokunaga, Y., Ishida, K., Kitaoka, Y., Asayama, K., Tokiwa, K., Iyo, A., Ihara, H.: Phys. Rev. B 61(14), 9707 (2000)

    Article  ADS  Google Scholar 

  45. Walstedt, R.E., Bell, R.F., Mitzi, D.B.: Phys. Rev. B 44(14), 7760 (1991)

    Article  ADS  Google Scholar 

  46. Bogdanovich, A., Zhdanov, Y.I., Mikhalyov, K., Lavrentjev, V., Aleksashin, B., Verkovskij, S., Winzek, N., Gergen, P., Gross, J., Mehring, M., et al.: Phys. C:, Supercond. 215(3-4), 253 (1993)

    Article  ADS  Google Scholar 

  47. Ohsugi, S., Kitaoka, Y., Ishida, K., Zheng, G.Q., Asayama, K.: J. Phys. Soc. Jpn. 63, 700 (1994)

    Article  ADS  Google Scholar 

  48. Gor’kov, L.P., Teitel’baum, G.B.: J. Exp. Theor. Phys. Lett. 80(3), 195 (2004)

    Article  Google Scholar 

  49. Imai, T., Slichter, C.P., Yoshimura, K., Katoh, M., Kosuge, K.: Phys. B Condens. Matter 197 (1-4), 601 (1994)

    Article  ADS  Google Scholar 

  50. Jurkutat, M., Rybicki, D., Sushkov, O.P., Williams, G.V.M., Erb, A., Haase, J.: Phys. Rev. B 90(R), 140504 (2014)

    Article  ADS  Google Scholar 

  51. Avramovska, M., Pavicevic, D., Haase, J.: Supercond. Nov. Magn. https://doi.org/10.1007/s10948-019-05174-w (2019)

    Article  Google Scholar 

  52. Berthier, C., Julien, M.H., Bakharev, O., Horvatić, M., Ségransan, P.: Phys. C 282, 227 (1997)

    Article  ADS  Google Scholar 

Download references

Funding

We acknowledge the financial support from the University of Leipzig, the Free State of Saxony, the European Social Fund (ESF), and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

Data collection was performed equally by D.D and M.J.; independent verification of collected data was equally performed by M.A. and J.H.; discussion of data with equal help from D.P. and G.V.M.W.; preparation of the manuscript was equally performed by M.A., M.J., J.H.; J.H. also performed the data analysis and led the overall project.

Corresponding author

Correspondence to Jürgen Haase.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Literature data processing

Appendix: Literature data processing

For the review of relaxation data, we have collected all available literature data of 63T1 of planar Cu. That means data for two orientations of the magnetic field with respect to the crystal c-axis, cB0 and cB0, i.e. 1/T1∥ and 1/T1⊥, respectively. Furthermore, nuclear quadrupole resonance (NQR) were gathered, as well. The set comprises about 54 materials for 1/T1∥. The discussion in this manuscript, however, is limited to the 24 systems listed in Table 1, for which data for both directions of the field are available. Nevertheless, this (significant) subset we are discussing is representative of all the data in terms of amplitude and different temperature dependences of relaxation, as we can judge from all 1/T1∥ data.

As remarked in the main text, the higher abundance of 1/T1∥ data is due to the use of c-axis aligned powders and NQR.

We have excluded data on electron-doped cuprates where 1/T1 in most cases is affected by rare earth magnetism in the charge reservoir layer, data on antiferromagnetic inner layers in triple and higher layered materials and data where it was unclear what definition for the T1 was used [46]. We have also excluded HgBa2CuO4+δ, for which our data are contradictory to results by Gippius et al. [43], as well as Tl2Ba2CaCu2O8−δ, since 63T1⊥ was not actually measured by Gerashenko et al. [40], but deduced from the spin-echo decay.

The data were extracted using the online software “WebPlotDigitzier”, for which screenshots from graphs from the referenced papers were imported and the data extracted using the software tools.

In Fig. 3, the temperature is an implicit parameter, owing to the limited availability of 1/T1α(T) data for both orientations at identical temperatures, we used a linear interpolation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurkutat, M., Avramovska, M., Williams, G.V.M. et al. Phenomenology of 63Cu Nuclear Relaxation in Cuprate Superconductors. J Supercond Nov Magn 32, 3369–3376 (2019). https://doi.org/10.1007/s10948-019-05275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05275-6

Keywords

Navigation