Skip to main content
Log in

Transference numbers and phenomenological transport coefficients for concentrated aqueous hydrochloric acid solutions at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The transference numbers of HCl in water at 25°C have been determined up to 8 mol-kg−1 by using cells with transference. The problem of the solubility of AgCl from Ag/AgCl electrodes was avoided by employing dilute chlorine gas/iridium electrodes for T H and hydrogen gas/platinum electrodes for T Cl . The sums of the independently measured T H and T Cl values never differed from unity by more than 0.9%. The cation constituent transference number of HCl was also measured at 1M by the recently modified moving boundary method, but at higher concentrations the Soret effect produced unacceptably large current dependences. Combination of these transference numbers with literature conductances, diffusion coefficients and activity coefficients led to a new set of phenomenological transport coefficients l ij . The resulting curve for l12/c vs. c behaves more normally than did the curve based on previous transference numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Spiro and F. King, ‘Transport Properties in Concentrated Aqueous Electrolyte Solutions’, inIonic Liquids, D. Inman and D. G. Lovering, eds. (Plenum Press, New York, 1981), Chap. 5.

    Google Scholar 

  2. H. S. Harned and E. C. Dreby,J. Am. Chem. Soc. 61, 3113 (1939).

    Google Scholar 

  3. S. Lengyel, J. Giber, and J. Tamás,Acta Chim. Acad. Sci. Hung. 32, 429 (1962).

    Google Scholar 

  4. A. Seidell,Solubilities of Inorganic and Metal Organic Compounds (Van Nostrand, New York, 1940), 3rd edn., Vol. 1.

    Google Scholar 

  5. S. Lengyel, inElectrolytes, B. Pesce, ed. (Pergamon Press, Oxford, 1962), p. 208.

    Google Scholar 

  6. F. King and M. Spiro,J. Solution Chem. 10, 881 (1981).

    Google Scholar 

  7. P. N. Snowdon and J. C. R. Turner,Trans. Faraday Soc. 56, 1409 (1960).

    Google Scholar 

  8. R. Haase, P.-F. Sauermann, and K.-H. Dücker,Z. Physik. Chem., Frankfurt 47, 224 (1965).

    Google Scholar 

  9. G. Jones and B. C. Bradshaw,J. Am. Chem. Soc. 54, 138 (1932).

    Google Scholar 

  10. J. R. Gwyther, S. Kumarasinghe, and M. Spiro,J. Solution Chem. 3, 659 (1974).

    Google Scholar 

  11. W. J. Hamer and H. J. DeWane,Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. No. 33 (1970).

  12. L. Nickels and A. J. Allmand,J. Phys. Chem. 41, 861 (1937).

    Google Scholar 

  13. M. Postler,Coll. Czech. Chem. Comm. 35, 535 (1970).

    Google Scholar 

  14. J. N. Agar, ‘Thermogalvanic Cells’, inAdvances in Electrochemistry and Electrochemical Engineering, P. Delahay, ed. (Interscience, New York, 1963), Vol. 3, Chap. 2.

    Google Scholar 

  15. L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).

    Google Scholar 

  16. C. Samis,Trans. Faraday Soc. 33, 469 (1937).

    Google Scholar 

  17. G. S. Kell, private communication (1961).

  18. R. H. Stokes and B. J. Levien,J. Am. Chem. Soc. 68, 333 (1946).

    Google Scholar 

  19. G. Faita, P. Longhi, and T. Mussini,J. Electrochem. Soc. 114, 340 (1967).

    Google Scholar 

  20. F. C. Rubio, F. D. Gonzalez, V. M. Jimenez, and J. A. C. Paniagua,Ann. Quim. 76, 397 (1980).

    Google Scholar 

  21. A. C. Wright, private communication, (1982).

  22. A. M. Feltham and M. Spiro,Chem. Rev. 71, 177 (1971).

    Google Scholar 

  23. R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworths, London, 1959), 2nd edn., Appendix 8.10.

    Google Scholar 

  24. M. J. Pikal and D. G. Miller,J. Phys. Chem. 74, 1337 (1970).

    Google Scholar 

  25. G. Akerlöf and T. W. Teare,J. Am. Chem. Soc. 59, 1855 (1937).

    Google Scholar 

  26. R. Fernández-Prini and J. E. Prue,J. Phys. Chem. 69, 2793 (1965).

    Google Scholar 

  27. M. Lucas,Bull. Soc. Chim. France 1792 (1969).

  28. M. Spiro and A. B. Ravnö,J. Chem. Soc. 78 (1965).

  29. M. Spiro, ‘Mixture Potentials in Chemistry’, inThe Physical Chemistry of Solutions, D. V. Fenby and I. D. Watson, eds. (Massey University Press, Palmerston North, New Zealand, 1983).

    Google Scholar 

  30. D. G. Miller,J. Phys. Chem. 70, 2639 (1966).

    Google Scholar 

  31. R. H. Stokes,J. Am. Chem. Soc. 72, 2243 (1950).

    Google Scholar 

  32. L. G. Longsworth,J. Am. Chem. Soc. 57, 1185 (1935).

    Google Scholar 

  33. D. G. Miller,Faraday Disc. Chem. Soc. 64, 295 (1977).

    Google Scholar 

  34. M. Spiro,Faraday Disc. Chem. Soc. 64, 345 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, F., Spiro, M. Transference numbers and phenomenological transport coefficients for concentrated aqueous hydrochloric acid solutions at 25°C. J Solution Chem 12, 65–81 (1983). https://doi.org/10.1007/BF00650713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650713

Key words

Navigation