Skip to main content

Advertisement

Log in

Limiting Conductivities of Univalent Cations and the Chloride Ion in H2O and D2O Under Hydrothermal Conditions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Frequency-dependent electrical conductivities of aqueous sodium chloride, potassium chloride, cesium chloride, potassium iodide and cesium iodide have been measured in both H2O and D2O between T = 298 and 598 K at p ~ 20 MPa at a ionic strength of ~10−3 mol·kg−1 using a high-precision flow-through AC electrical conductance instrument. Experimental values for the molar conductivity, Λ, of each electrolyte were used to calculate their molar conductivities at infinite dilution, Λ°, with the Fuoss–Hsia–Fernández-Prini conductivity model. Single-ion limiting conductivities for the chloride ion in H2O, λ°(Cl), were derived from Λ° by extrapolating literature values for the transference number of Cl, t°(Cl), in aqueous solutions of KCl and NaCl from ~400 and ~390 K up to the experimental conditions. Values for λ°(Cl) in D2O were determined from literature values of t°(Cl) for KCl in D2O near ambient conditions, assuming the same temperature dependence as in H2O. The results were used to calculate values for the single ion limiting conductivities λ°(Na+), λ°(K+), λ°(Cs+), λ°(Cl), and λ°(I) in both light and heavy water. The values of λ° in D2O are the first to be reported at temperatures above 338 K. The temperature dependence of the isotopic Walden product ratio, \( (\lambda^\circ \eta )_{{{\text{D}}_{2} {\text{O}}}} /(\lambda {^\circ }\eta )_{{{\text{H}}_{2} {\text{O}}}} \), indicates that differences in the hydration of Cl, K+ and Cs+ ions between light and heavy water at ambient conditions associated with hydrogen-bonding, the so-called “structure breaking” effects, largely disappear at temperatures above ~400 K. The value of \( (\lambda^\circ \eta )_{{{\text{D}}_{2} {\text{O}}}} /(\lambda {^\circ }\eta )_{{{\text{H}}_{2} {\text{O}}}} \) for the “structure making” ion Na+ rises from 0.98 at 298.15 K to ~1.04 ± 0.02 at temperatures above ~375 K and remains approximately constant up to 600 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weingärtner, H., Franck, E.U.: Supercritical water as a solvent. Angew. Chem. Int. Ed. 44, 2672–2692 (2005)

    Article  Google Scholar 

  2. Corti, H.R., Trevani, L.N., Anderko, A.: Transport properties in high temperature and pressure ionic solutions. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Aqueous Solutions, Chap. 10, pp. 321–376. Elsevier Academic Press, New York (2004)

    Chapter  Google Scholar 

  3. Frantz, J.D., Marshall, L.: Electrical conductances and ionization constants of salts, acids, and bases in supercritical aqueous fluids: I. Hydrochloric acid from 100° to 700 °C and at pressures to 4000 bars. Am. J. Sci. 284, 651–667 (1984)

    Article  CAS  Google Scholar 

  4. Marshall, W.L., Frantz, J.D.: Electrical conductance measurements of dilute, aqueous electrolytes at temperatures up to 800 °C and pressures to 4264 bars: techniques and interpretations. In: Ulmer, G.C., Barnes, H.L. (eds.) Hydrothermal Experimental Techniques, pp. 216–292. Wiley-Interscience Publication, New York (1987)

    Google Scholar 

  5. Noyes, A.A., Coolidge, W.D.: The electrical conductivity of aqueous solutions at high temperatures, I. Description of the apparatus. Results with NaCl and KCl up to 306 °C. Z. Phys. Chem. 46, 323–378 (1904)

    Google Scholar 

  6. Noyes, A.A., Coolidge, W.D.: The electrical conductivity of aqueous solutions at high temperatures. J. Am. Chem. Soc. 26, 134–170 (1904)

    Article  CAS  Google Scholar 

  7. Noyes, A.A., Melcher, A.C., Cooper, H.C., Eastman, G.W., Kato, Y.: The conductivity and ionization of salts, acids, and bases in aqueous solutions at high temperatures. J. Am. Chem. Soc. 30, 335–353 (1908)

    Article  CAS  Google Scholar 

  8. Noyes, A.A., Melcher, A.C., Cooper, H.C., Eastman, G.W.: The conductivity and ionization of salts, acids, and bases in aqueous solutions at high temperatures. Z. Phys. Chem. 70, 335–377 (1910)

    CAS  Google Scholar 

  9. Franck, E.U.: Hochverdichteter Wasserdampf III. Ionizen dissoziation von HCI, KOH und H2O in Ueberkritischem Wasser, 2. Z. Phys. Chem. 8, 192–206 (1956)

    Article  CAS  Google Scholar 

  10. Quist, A.S., Marshall, W.L.: Assignment of limiting equivalent conductances for single ions to 400°. J. Phys. Chem. 69, 2984–2987 (1965)

    Article  CAS  Google Scholar 

  11. Quist, A.S., Marshall, W.L.: Electrical conductances of aqueous sodium chloride solutions from 0 to 800° and at pressures to 4000 bar. J. Phys. Chem. 72, 684–703 (1968)

    Article  CAS  Google Scholar 

  12. Horvath, A.L.: Handbook of Aqueous Electrolyte Solutions: Physical Properties, Estimation and Correlation Methods, pp. 249–284. Ellis Horwood Ltd., Chichester (1985)

    Google Scholar 

  13. Marshall, W.L.: Reduced state relationship for limiting electrical conductances of aqueous ions over wide ranges of temperature and pressure. J. Chem. Phys. 87, 3639–3643 (1987)

    Article  CAS  Google Scholar 

  14. Marshall, W.M.: Electrical conductance of liquid and supercritical water evaluated from 0 °C and 0.1 MPa to high temperatures and pressures: reduced-state relationships. J. Chem. Eng. Data 32, 221–226 (1987)

    Article  CAS  Google Scholar 

  15. Smith, J.E., Dismukes, E.B.: Transference numbers in aqueous sodium chloride at elevated temperatures. J. Phys. Chem. 68, 1603–1606 (1964)

    Article  CAS  Google Scholar 

  16. Ho, P.C., Palmer, D.A., Mesmer, R.E.: Electrical conductivity measurements of aqueous sodium chloride solutions to 600 °C and 300 MPa. J. Solution Chem. 23, 997–1018 (1994)

    Article  CAS  Google Scholar 

  17. Bianchi, H., Corti, H.R., Fernández-Prini, R.: Electrical conductivity of aqueous sodium hydroxide solutions at high temperatures. J. Solution Chem. 23, 1203–12012 (1994)

    Article  CAS  Google Scholar 

  18. Zimmerman, G.H., Gruskiewicz, M.S., Wood, R.H.: New apparatus for conductance measurements at high temperatures: conductance of aqueous solutions of LiCl, NaCl, NaBr, and CsBr at 28 MPa and water densities from 700 to 260 kg m−3. J. Phys. Chem. 99, 11612–11625 (1995)

    Article  CAS  Google Scholar 

  19. Sharygin, A.V., Wood, R.H., Zimmerman, G.H., Balashov, V.N.: Multiple ion association versus redissociation in aqueous NaCl and KCl at high temperatures. J. Phys. Chem. B 106, 7121–7134 (2002)

    Article  CAS  Google Scholar 

  20. Hnedkovsky, L., Wood, R.H., Balashov, V.N.: Electrical conductances of aqueous Na2SO4, H2SO4, and their mixtures: limiting equivalent ion conductances, dissociation constants, and speciation to 673 K and 28 MPa. J. Phys. Chem. B 109, 9034–9046 (2005)

    Article  CAS  Google Scholar 

  21. Ho, P.C., Bianchi, H., Palmer, D.A., Wood, R.H.: Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a flow cell. J. Solution Chem. 29, 217–235 (2000)

    Article  CAS  Google Scholar 

  22. Ho, P.C., Palmer, D.A., Wood, R.H.: Conductivity measurements of dilute aqueous LiOH, NaOH, and KOH solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B 104, 12084–12089 (2000)

    Article  CAS  Google Scholar 

  23. Ho, P.C., Palmer, D.A., Gruszkiewicz, M.S.: Conductivity measurements of dilute aqueous HCl solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B 105, 1260–1266 (2001)

    Article  CAS  Google Scholar 

  24. Sharygin, A.V., Mokbel, I., Xiao, C., Wood, R.H.: Tests of equations for the electrical conductance of electrolyte mixtures: measurements of association of NaCl(aq) and Na2SO4(aq) at high temperatures. J. Phys. Chem. B 105, 229–237 (2001)

    Article  CAS  Google Scholar 

  25. Sharygin, A.V., Grafton, B.K., Xiao, C., Wood, R.H., Balashov, V.N.: Dissociation constants and speciation in aqueous Li2SO4 and K2SO4 from measurements of electrical conductance to 673 K and 29 MPa. Geochim. Cosmochim. Acta 70, 5169–5182 (2006)

    Article  CAS  Google Scholar 

  26. Zimmerman, G.H., Wood, R.H.: Conductance of dilute sodium acetate solutions to 469 K and of acetic acid and sodium acetate/acetic acid mixtures to 548 K and 20 MPa. J. Solution Chem. 31, 995–1017 (2002)

    Article  CAS  Google Scholar 

  27. Méndez De Leo, L.P., Wood, R.H.: Conductance study of association in aqueous CaCl2, Ca(CH3COO)2, and Ca(CH3COO)2·nCH3COOH from 348 to 523 K at 10 MPa. J. Phys. Chem. B 109, 14243–14250 (2005)

    Article  Google Scholar 

  28. Zimmerman, G.H., Arcis, H., Tremaine, P.R.: Limiting conductivities and ion association constants of aqueous NaCl under hydrothermal conditions: experimental data and correlations. J. Chem. Eng. Data 57, 2415–2429 (2012)

    Article  CAS  Google Scholar 

  29. Zimmerman, G.H., Arcis, H., Tremaine, P.R.: Limiting conductivities and ion association in aqueous NaCF3SO3 and Sr(CF3SO3)2 from 298 to 623 K at 20 MPa. Is triflate a non-complexing anion in high temperature water? J. Chem. Eng. Data 57, 3180–3197 (2012)

    Article  CAS  Google Scholar 

  30. Swain, C.G., Evans, D.F.: Conductance of ions in light and heavy water at 25°. J. Am. Chem. Soc. 88, 383–390 (1966)

    Article  CAS  Google Scholar 

  31. Broadwater, T.L., Evans, D.F.: The conductance of divalent ions in H2O at 10 and 25 °C and in D2O. J. Solution Chem. 3, 757–769 (1974)

    Article  CAS  Google Scholar 

  32. Broadwater, T.L., Kay, R.L.: The temperature coefficient of conductance for the alkali metal, halide, tetraalkylammonium, halate, and perhalate ions in D2O. J. Solution Chem. 4, 745–762 (1975)

    Article  CAS  Google Scholar 

  33. Tada, Y., Ueno, M., Tsuchihashi, N., Shimizu, K.: Pressure and temperature effects on the excess deuteron and proton conductance. J. Solution Chem. 21, 971–985 (1992)

    Article  CAS  Google Scholar 

  34. Tada, Y., Ueno, M., Tsuchihashi, N., Shimizu, K.: Pressure and isotope effects on the proton jump of the hydroxide ion at 25 °C. J. Solution Chem. 22, 1135–1149 (1993)

    Article  CAS  Google Scholar 

  35. Tada, Y., Ueno, M., Tsuchihashi, N., Shimizu, K.: Comparison of temperature, pressure and isotope effects on the proton jump between the hydroxide and oxonium ion. J. Solution Chem. 23, 973–987 (1994)

    Article  CAS  Google Scholar 

  36. Guzonas, D., Brosseau, F., Tremaine, P., Meesungnoen, J., Jay-Gerin, J.-P.: Key water chemistry issues in a supercritical-water-cooled pressure-tube reactor. Nucl. Technol. 179, 205–279 (2012)

    CAS  Google Scholar 

  37. Erickson, K.M., Arcis, H., Raffa, D., Zimmerman, G.H., Tremaine, P.R.: Deuterium isotope effects on the ionization constant of acetic acid in H2O and D2O by AC conductance from 100 C to 275 C at 20 MPa. J. Phys. Chem B 115, 3038–3151 (2011); erratum: Erickson, K.M., Arcis, H., Raffa, D., Zimmerman, G.H., Tremaine, P.R.: J. Phys. Chem B (in preparation)

  38. Arcis, H., Zimmerman, G.H., Tremaine, P.R.: Ion-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements. Phys. Chem. Chem. Phys. 16, 17688–17704 (2014)

    Article  CAS  Google Scholar 

  39. Hamann, S.D., Linton, M.: Influence of pressure on the rates of deuterium of formate and acetate ions in liquid D2O. Aust. J. Chem. 30, 1883–1889 (1977)

    Article  CAS  Google Scholar 

  40. Zimmerman, G.H., Arcis, H.: Extrapolation methods for AC impedance measurements made with a concentric cylinder cell on solutions of high ionic strength. J. Solution Chem. (2014). doi:10.1007/s10953-014-0208-x

  41. Barthel, J., Feuerlein, F., Neuder, R., Wachter, R.: Calibration of conductance cells at various temperatures. J. Solution Chem. 9, 209–219 (1980)

    Article  CAS  Google Scholar 

  42. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 Kb. Am. J. Sci. 281, 1249–1516 (1981)

    Article  CAS  Google Scholar 

  43. Tanger IV, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

    Article  CAS  Google Scholar 

  44. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)

    Article  CAS  Google Scholar 

  45. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  46. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  47. Fernandez, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt-Sengers, J.M.H., Williams, R.C.: A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125–1166 (1997)

    Article  CAS  Google Scholar 

  48. Hill, P.G., MacMillan, R.D.C., Lee, V.A.: Fundamental equation of state for heavy water. J. Phys. Chem. Ref. Data 11, 1–14 (1982)

    Article  CAS  Google Scholar 

  49. “ASME and IAPWS Formulation for Water and Steam”, NIST Standard Ref. Database 10, 2.2; “REFPROP: Equations of State for Pure and Binary Fluids” NIST Standard Ref. Database 22, 8.0

  50. Trevani, L.N., Balodis, E., Tremaine, P.R.: Apparent and standard partial molar volumes of NaCl, NaOH, and HCl in water and heavy water at T = 523 K and 573 K at p = 14 MPa. J. Phys. Chem. B 111, 2015–2024 (2007)

    Article  CAS  Google Scholar 

  51. Fernández-Prini, R.: Conductance of electrolyte solutions a modified expression for its concentration dependence. Trans. Faraday Soc. 65, 3311–3313 (1969)

    Article  Google Scholar 

  52. Bianchi, H., Dujovne, I., Fernández-Prini, R.: Comparison of electrolytic conductivity theories: performance of classical and new theories. J. Solution Chem. 29, 237–253 (2000)

    Article  CAS  Google Scholar 

  53. Longsworth, L.G.: Transference numbers of aqueous solutions of potassium chloride, sodium chloride, lithium chloride and hydrochloric acid at 25° by the moving boundary method. J. Am. Chem. Soc. 54, 2741–2758 (1932)

    Article  CAS  Google Scholar 

  54. MacInnes, D.A., Longsworth, L.G.: Transference numbers by the method of moving boundaries. Chem. Rev. 11(2), 171–230 (1932)

    Article  CAS  Google Scholar 

  55. Allgood, R.W., Le Roy, D.J., Gordon, A.R.: The variation of the transference numbers of potassium chloride in aqueous solution with temperature. J. Chem. Phys. 8, 418–422 (1940)

    Article  CAS  Google Scholar 

  56. Allgood, R.W., Gordon, A.R.: The variation of the transference numbers of sodium chloride in aqueous solution with temperature. II. J. Chem. Phys. 10, 124–126 (1942)

    Article  CAS  Google Scholar 

  57. Smith, J.E., Dismukes, E.B.: The cation transference number in aqueous potassium chloride at 70 to 115°. J. Phys. Chem. 67, 1160–1161 (1963)

    Article  CAS  Google Scholar 

  58. Ueno, M., Yoneda, A., Tsuchihashi, N., Shimizu, K.: Solvent isotope effect on mobilities of potassium and chloride ions in water at high pressure. II. A low temperature study. J. Chem. Phys. 86, 4678–4683 (1987)

    Article  CAS  Google Scholar 

  59. Nakahara, M., Zenke, M., Ueno, M., Shimizu, K.: Solvent isotope effect on ion mobility in water at high pressure: conductance and transference number of potassium chloride in compressed heavy water. J. Chem. Phys. 83, 280–287 (1985)

    Article  CAS  Google Scholar 

  60. Ueno, M., Tsuchihashi, N., Shimizu, K.: Solvent isotope effects on mobilities of potassium and chloride ion in water at high pressure. III. A high temperature study. J. Chem. Phys. 92, 2548–2552 (1990)

    Article  CAS  Google Scholar 

  61. Smolyakov, B.S., Veselova, G.A.: Limiting equivalent conductivity of Li+, Na+, K+, Rb+, Cs+ and Cl ions in water at temperatures between 5 and 200 °C. I. Experimental data. Sov. Electrochem. 10, 851–855 (1974)

    Google Scholar 

  62. Brummer, S.B., Hills, G.J.: Kinetics of ionic conductance. Trans. Faraday Soc. 57, 1816–1837 (1961)

    Article  CAS  Google Scholar 

  63. Smolyakov, B.S., Veselova, G.A.: Limiting equivalent conductivity of aqueous solutions of Li+, Na+, K+, Rb+, Cs+ and Cl ions in water at temperatures between 5 and 200 °C. II. Relations between the limiting conductivity and the viscosity of water. Sov. Electrochem. 11, 653–656 (1975)

    Google Scholar 

  64. Oelkers, E.H., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800 °C and pressures from 500 to 4000 bar. J. Phys. Chem. 92, 1631–1639 (1988)

    Article  CAS  Google Scholar 

  65. Oelkers, E.H., Helgeson, H.C.: Calculation of the transport properties of aqueous species at pressures to 5 KB and temperatures to 1000 °C. J. Solution Chem. 18, 601–640 (1989)

    Article  CAS  Google Scholar 

  66. Longinotti, M.P., Corti, H.R.: Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions. J. Phys. Chem. B 113, 5500–5507 (2009)

    Article  CAS  Google Scholar 

  67. Zimmerman, G.H., Scott, P.W., Greynolds, W.A.: New flow instrument for conductance measurements at elevated temperatures and pressures: measurements on NaCl(aq) to 458 K and 1.4 MPa. J. Solution Chem. 36, 767–786 (2007)

    Article  CAS  Google Scholar 

  68. Zimmerman, G.H., Scott, P.W., Greynolds, W., Mayorov, D.: Conductance of dilute hydrochloric acid solutions to 458 K and 1.4 MPa. J. Solution Chem. 38, 499–512 (2009)

    Article  CAS  Google Scholar 

  69. Holten, V., Anisimov, M.A.: Entropy-driven liquid–liquid separation in supercooled water. Sci. Rep. 2, 1–7 (2012)

    Article  Google Scholar 

  70. Debenedetti, P.G.: Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003)

    Article  CAS  Google Scholar 

  71. Mishima, O., Stanley, H.E.: The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998)

    Article  CAS  Google Scholar 

  72. Mishima, O.: Liquid–liquid critical point in heavy water. Phys. Chem. Rev. 85, 334–336 (2000)

    CAS  Google Scholar 

  73. Anderson, G.M., Castet, S., Schott, J., Mesmer, R.E.: The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures. Geochim. Cosmochim. Acta 55, 1769–1779 (1991)

    Article  CAS  Google Scholar 

  74. Mesmer, R.E., Marshall, W.L., Palmer, D.A., Simonson, J.M., Holmes, H.F.: Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures. J. Solution Chem. 17, 699–718 (1988)

    Article  CAS  Google Scholar 

  75. Frank, H.S., Wen, W.Y.: III Ion-solvent interaction structural aspects of ion–solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss. Faraday Soc. 24, 133–140 (1957)

    Article  Google Scholar 

  76. Kay, R.L.: The current state of our understanding of ionic mobilities. Pure Appl. Chem. 63, 1393–1399 (1991)

    Article  CAS  Google Scholar 

  77. Marcus, Y.: Are ionic Stokes radii of any use? J. Solution Chem. 41, 2082–2090 (2012)

    Article  CAS  Google Scholar 

  78. Hubbard, J., Onsager, L.: Dielectric dispersion and dielectric friction in electrolyte solutions. I. J. Chem. Phys. 67, 4850–4857 (1977)

    Article  CAS  Google Scholar 

  79. Hubbard, J.: Dielectric dispersion and dielectric friction in electrolyte solutions. II. J. Chem. Phys. 68, 1649–1664 (1978)

    Article  CAS  Google Scholar 

  80. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)

    Article  CAS  Google Scholar 

  81. Kestin, J., Sengers, J.V.: New international formulation for the thermodynamic properties of light and heavy water. J. Phys. Chem. Ref. Data 15, 305–320 (1986)

    Article  CAS  Google Scholar 

  82. Nakahara, M.: Structure, dynamics, and reactions of supercritical water studied by NMR and computer simulation. In: Water, Steam, and Aqueous Solutions for Electric Power. Advances in Science and Technology. Proceedings of the 14th International Conference on the Properties of Water and Steam, Japan, Kyoto, 29 August–3 September (2004)

  83. Tremaine, P.R., Arcis, H.: Solution calorimetry under hydrothermal conditions. Rev. Mineral. Geochem. 76, 249–263 (2013)

    Article  Google Scholar 

  84. Xiao, C.V., Wood, R.H.: Compressible continuum model for ion transport in high-temperature water. J. Phys. Chem. B 104, 918–925 (2000)

    Article  CAS  Google Scholar 

  85. Balbuena, P.B., Johnston, K.P., Rossky, P.J.: Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 1. Ion solvation. J. Phys. Chem. 100, 2706–2715 (1996)

    Article  CAS  Google Scholar 

  86. Quint, J.R., Wood, R.H.: Thermodynamics of a charged hard sphere in a compressible dielectric fluid. 2. Calculation of the ion–solvent pair correlation function, the excess solvation, the dielectric constant near the ion, and the partial molar volume of the ion in a water-like fluid above the critical point. J. Phys. Chem. 89, 380–384 (1985)

    Article  CAS  Google Scholar 

  87. Seward, T.M., Driesner, T.: Hydrothermal solution structure: experiments and computer simulations. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Aqueous Solutions, Chap. 5, pp. 149–182. Elsevier Academic Press, New York (2004)

    Chapter  Google Scholar 

  88. Driesner, T.: The molecular-scale fundamentals of geothermal fluid thermodynamics. Rev. Mineral. Geochem. 76, 5–33 (2013)

    Article  CAS  Google Scholar 

  89. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Pure Appl. Chem. 82, 1889–1899 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their deep gratitude to Prof. Robert H. Wood, University of Delaware, for donating the AC conductance cell to the Hydrothermal Chemistry Laboratory at the University of Guelph. We are grateful to both Professor Wood and Professor Greg Zimmerman for providing us with the benefit of their extensive operating experience, and for many fruitful discussions. We also thank Mr. Ian Renaud and Mr. Casey Gielen of the electronics shop and machine shop in the College of Physical and Engineering Science at the University of Guelph for their very considerable expertise in maintaining and modifying the instrument and its data acquisition system. This research was supported by the Natural Science and Engineering Research Council of Canada (NSERC), Ontario Power Generation Ltd. (OPG), and the University Network of Excellence in Nuclear Engineering (UNENE). Technical advice and encouragement were provided by Dr. Dave Guzonas, Atomic Energy of Canada Ltd.; Dr. Dave Evans, Ontario Power Generation Ltd.; and Dr. Mike Upton, Bruce Power Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Tremaine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plumridge, J., Arcis, H. & Tremaine, P.R. Limiting Conductivities of Univalent Cations and the Chloride Ion in H2O and D2O Under Hydrothermal Conditions. J Solution Chem 44, 1062–1089 (2015). https://doi.org/10.1007/s10953-014-0281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0281-1

Keywords

Navigation