Skip to main content
Log in

Volumes, heat capacities and solubilities of amyl compounds in decyltrimethylammonium bromide aqueous solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar heat capacities and volumes of amylamine (PentNH2) 0.02m, capronitrile (PentCN) 0.02m and nitropentane (PentNO2) 0.009m in decyltrimethylammonium bromide (DeTAB) micellar solutions, in water and in octane were measured at 25°C. By assuming that their concentration approaches the standard infinite dilution state, heat capacities and volumes were rationalized by means of previously reported equations following which the distribution constant between the aqueous and the micellar phase and heat capacity and volume of the additives in both phases are simultaneously derived. The present results are compared to those we have previously obtained for pentanol (PentOH). The thermodynamic properties of PentNH2 in water and in micellar phase are substantially identical to those of PentOH but different from those of PentCN and PentNO2 whereas the opposite behavior was observed in their pure liquid state and in octane. The nature of the solvent medium seems to affect the thermodynamic behavior of PentNH2. Also, the study of the apparent molar heat capacities of the amyl compounds investigated here in micellar solutions as a function of surfactant concentration shows evidence of a maximum at about 0.4m DeTAB, which can be attributed to a micellar structural transition. Accordingly, the solubilities of PentCN and PentNO2 as a function of the DeTAB concentration drop in the neighborhood of the concentration where heat capacities display the maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Manabe, K. Shirahama, and M. Koda,Bull. Chem. Soc. Jpn. 49, 2904 (1976).

    Google Scholar 

  2. K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

    Google Scholar 

  3. S. Kaneshina, H. Kamaya, and I. Ueda,J. Colloid Interface Sci. 83, 589 (1981).

    Google Scholar 

  4. P. Stilbs,J. Colloid Interface Sci. 87, 385 (1982).

    Google Scholar 

  5. C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).

    Google Scholar 

  6. H. Hoiland, O. Kvammen, S. Backlund, and K. Rundt, inSurfactants in Solution, eds., K.L. Mittal and B. Lindman (Plenum Press, New York, 1984).

    Google Scholar 

  7. R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 113, 371 (1983).

    Google Scholar 

  8. R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Google Scholar 

  9. A. H. Roux, D. Hétu, G. Perron and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  10. D. Hétu, A. H. Roux, and J. E. Desnoyers,J. Solution Chem. 16, 529 (1987).

    Google Scholar 

  11. F. Yamashita, G. Perron, J. E. Desnoyers, and J.T.C. Kwak, (ACS Symposium Series, No. 311, 1986).

  12. R. De Lisi, A. Lizzio, S. Milioto, and V. Turco Liveri,J. Solution Chem. 15, 623 (1986).

    Google Scholar 

  13. R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).

    Google Scholar 

  14. R. De Lisi, S. Milioto, and V. Turco Liveri,J. Colloid Interface Sci. 117, 64 (1987).

    Google Scholar 

  15. S. Milioto, D. Romancino, and R. De Lisi,J. Solution Chem. 16, 943 (1987).

    Google Scholar 

  16. R. De Lisi and S. Milioto,J. Solution Chem. 17, 673 (1988).

    Google Scholar 

  17. R. De Lisi, E. Fisicaro, and S. Milioto,J. Solution Chem. 18, 403 (1989).

    Google Scholar 

  18. C. Treiner and M.H. Mannebach,J. Colloid Interface Sci. 118, 243 (1987).

    Google Scholar 

  19. S. Milioto and R. De Lisi,J. Solution Chem. 17, 937 (1988).

    Google Scholar 

  20. S. Milioto and R. De Lisi,Termochim. Acta 137, 151 (1988).

    Google Scholar 

  21. R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. 17, 673 (1988).

    Google Scholar 

  22. J. P. Grolier, A. Inglese, A. H. Roux, and E. Wilhelm,Ber. Bunsenges. Phys. Chem. 85, 768 (1981).

    Google Scholar 

  23. G. S. Kell,J. Chem. Ing. Data 12, 66 (1967).

    Google Scholar 

  24. M. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  25. P. Lianos and R. Zana,J. Colloid Interface Sci. 101, 587 (1984).

    Google Scholar 

  26. H. Hoiland, A.M. Blokhus, O.J. Kvammen, and S. Backlund,J. Colloid Interface Sci. 107, 576 (1985).

    Google Scholar 

  27. G. Roux-Desgranges, A. H. Roux, J-P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  28. R. De Lisi and S. Milioto,J. Solution Chem. 16, 767 (1987).

    Google Scholar 

  29. G. Roux-Desgranges, A. H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).

    Google Scholar 

  30. C. Treiner,J. Colloid Interface Sci. 90, 444 (1982).

    Google Scholar 

  31. C. L. De Ligny and N. G. Van der Veen,Rec. Trav. Chim. 90, 984 (1971).

    Google Scholar 

  32. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  33. R. Aveyard and R. Heselden,J. Chem. Soc. Faraday Trans. I 70, 1953 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Milioto, S. & Triolo, R. Volumes, heat capacities and solubilities of amyl compounds in decyltrimethylammonium bromide aqueous solutions. J Solution Chem 18, 905–925 (1989). https://doi.org/10.1007/BF00647892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647892

Key Words

Navigation