Skip to main content
Log in

Partial molar volumes of monovalent ions in ethanolamine and water + ethanolamine mixtures at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Precise densities for sodium of chloride, bromide and iodide and potassium iodide in ethanolamine and water+ethanolamine mixtures (15, 30, 50, 60, 70, 80 and 90 mass% ethanolamine) up to a maximum salt molality of 0.15 mol-kg−1 are reported from measurements at 25°C using a vibrating tube densimeter. The electrolyte apparent molar volumes were calculated and extrapolated to infinite dilution using the Masson equation to yield the limiting electrolyte partial molar volumes. The limiting ionic partial molar volumes V oion were estimated using Mukerjee's method. A correspondence principle proposed earlier for predicting ionic entropies could be used for the estimation of V oion for rubidium and cesium salts. The estimates of the contributions from geometric and the electrostrictive effects to V oion are also reported. The variations in these contributions with the change in solvent composition are discussed in terms of the changes in the solvent structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Millero,Chem. Rev. 71, 147 (1971) and references therein.

    Article  CAS  Google Scholar 

  2. F. J. Millero,The Partial Molal Volumes of Electrolytes in Aqueous Solution in Water and Aqueous Solutions, R. A. Horne, ed., (Wiley-Interscience, New York, 1972) and references therein.

    Google Scholar 

  3. B. S. Krumgalz,J. Chem. Soc. Faraday Trans. I 76, 1887 (1980) and references therein.

    Article  CAS  Google Scholar 

  4. I. Lee and J. B. Hyne,Can. J. Chem. 46, 2333 (1968).

    Article  CAS  Google Scholar 

  5. M. Woldan,Ber. Bunsenger Phys. Chem. 91, 519 (1987).

    CAS  Google Scholar 

  6. G. T. Hefter, J. P. E. Grolier, and A. H. Roux,J. Solution Chem. 18, 229 (1989).

    Article  CAS  Google Scholar 

  7. A. M. Couture and K. J. Laidler,Can. J. Chem. 34, 1209 (1956).

    Article  CAS  Google Scholar 

  8. P. Mukerjee,J. Phys. Chem. 65, 740 (1961).

    CAS  Google Scholar 

  9. F. J. Millero,J. Phys. Chem. 73, 2417 (1969).

    Article  CAS  Google Scholar 

  10. U. Sen,J. Phys. Chem. 81, 35 (1977).

    Article  CAS  Google Scholar 

  11. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 627 (1974).

    Article  CAS  Google Scholar 

  12. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).

    Article  CAS  Google Scholar 

  13. B. E. Conway, R. E. Verrall, and J. E. Desnoyers,Z. Phys. Chem. 230, 157 (1965).

    CAS  Google Scholar 

  14. C. Jolicoeur, P. R. Philip, G. Perron P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Article  CAS  Google Scholar 

  15. R. Zana, J. E. Desnoyers, G. Perron, R. L. Kay, and K. Lee,J. Phys. Chem. 86, 3996 (1982).

    Article  CAS  Google Scholar 

  16. F. J. Millero,J. Phys. Chem. 75, 280 (1971).

    Article  CAS  Google Scholar 

  17. R. Zana and E. Yeager,J. Phys. Chem. 71, 521 (1967).

    Article  CAS  Google Scholar 

  18. H. Hirakawa,J. Phys. Chem. 91, 3452 (1987).

    Article  CAS  Google Scholar 

  19. E. Matteoli,Z. Phys Chem. (NF) 123, 141, (1980).

    CAS  Google Scholar 

  20. E. Scholze,Karl Fischer Titration: Chemical Laboratory Practice (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  21. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Article  CAS  Google Scholar 

  22. P. G. Glugra, J. H. Byon, and C. A. Eckert,J. Chem. Eng. Data 28, 393 (1983).

    Article  Google Scholar 

  23. J. E. Desnoyers, M. Arel, G. Perron, and C. Jolicoeur,J. Phys. Chem. 73, 3346 (1969).

    Article  CAS  Google Scholar 

  24. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, IV/1b, K. H. Hellwege, ed., (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  25. P. W. Brewster, F. C. Schmidt, and W. B. Schaap,J. Am. Chem. Soc. 81, 5532 (1959).

    Article  CAS  Google Scholar 

  26. R. E. Reitmer, V. Sivertz, and H. V. Tartar,J. Am. Chem. Soc. 62, 1943 (1949).

    Article  Google Scholar 

  27. D. O. Masson,Phil. Mag. 8, 218 (1929).

    CAS  Google Scholar 

  28. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5385 (1964).

    Article  CAS  Google Scholar 

  29. C. M. Criss, R. P. Held, and E. Luksha,J. Phys. Chem. 72, 2970 (1968).

    Article  CAS  Google Scholar 

  30. A. J. Ellis,J. Chem. Soc. A 1138 (1968).

  31. A. Awoyo,Rev. Roum. de Chimie 35, 523 (1990).

    Google Scholar 

  32. O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 3263 (1965).

    Article  Google Scholar 

  33. M. V. Kaulgud and K. J. Patil,Ind. J. Pure and Appl. Phys. 13, 322 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadi, R.K., Kathuria, P. Partial molar volumes of monovalent ions in ethanolamine and water + ethanolamine mixtures at 25°C. J Solution Chem 21, 361–374 (1992). https://doi.org/10.1007/BF00647859

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647859

Key words

Navigation