Skip to main content

Advertisement

Log in

Osmotic and Activity Coefficients of Lithium Nitrate in Ethanol Under High Pressures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The pressure dependences of the osmotic and activity coefficients of lithium nitrate (LiNO3) in ethanol at 298.15 K up to 40 MPa and 3.0 mol·kg−1 have been estimated from literature volumetric data on LiNO3 solutions in ethanol using the Pitzer ion-interaction or virial coefficient approach. In particular, the volumetric Pitzer ion-interaction parameters (\(\beta_{{{\text{MX}}}}^{{\left( 0 \right){\text{V}}}}\), \(\beta_{{{\text{MX}}}}^{{\left( 1 \right){\text{V}}}}\), and \(C_{{{\text{MX}}}}^{{\text{V}}}\)) have been evaluated from a mathematical fit of literature apparent molar volume data to the appropriate Pitzer equation. These were then expressed as polynomials in pressure, which were used to calculate the change in the osmotic and activity coefficients in going from an initial pressure of p1 to a final pressure of p2. These pressure dependences have subsequently been coupled with the osmotic and activity coefficient values of ethanolic LiNO3 solutions at atmospheric pressure obtained from the literature to yield a comprehensive set of osmotic and activity coefficients for LiNO3 solutions in ethanol at 298.15 K, pressures of 5, 10, 15, 20, 25, 30, 35, and 40 MPa, and molalities to 3.0 mol·kg−1. The approximation as to the pressure dependence of the dielectric constant of ethanol estimated using the isothermal compressibilities has been tested for pressures above 0.1 MPa. The results demonstrate that this approximation becomes poorer with the increase in pressure as far as ethanol is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pitzer, K.S.: Thermodynamics, 3rd edn. McGraw-Hill, Inc., New York (1995)

    Google Scholar 

  2. Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  3. Pramanik, S., Saha, B., Das, B.: Correlation of the volumetric properties of uni-univalent electrolytes in methanol-water mixed solvent media: a pitzer ion-interaction approach. J. Solution Chem. 49, 825–835 (2020)

    Article  CAS  Google Scholar 

  4. Pramanik, S., Das, B.: Thermodynamic Properties of aqueous sodium nitrate solutions under superambient conditions. J. Solution Chem. 48, 167–179 (2019)

    Article  CAS  Google Scholar 

  5. Das, B.: Pitzer ion interaction parameters of single aqueous electrolytes at 25°c. J. Solution Chem. 33, 33–45 (2003)

    Article  Google Scholar 

  6. Das, B., Pitzer, K.S.: Thermodynamic properties of aqueous potassium fluoride under superambient conditions. J. Solution Chem. 30, 489–496 (2001)

    Article  CAS  Google Scholar 

  7. Krumgalz, B.S., Pogorelskii, R., Sokolov, A., Pitzer, K.S.: Volumetric ion-interaction parameters for single-solute aqueous electrolyte solutions at various temperatures. J. Phys. Chem. Ref. Data 29, 1123–1140 (2000)

    Article  CAS  Google Scholar 

  8. Das, B., Pitzer, K.S.: Thermodynamic properties of aqueous potassium sulfate under superambient conditions. J. Solution Chem. 28, 283–289 (1999)

    Article  CAS  Google Scholar 

  9. Criss, C.M., Millero, F.J.: Modeling heat capacities of high valence-type electrolyte solutions with Pitzer’s equations. J. Solution Chem. 28, 849–864 (1999)

    Article  CAS  Google Scholar 

  10. Holmes, H.F., Mesmer, R.E.: Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 30, 311–326 (1998)

    Article  CAS  Google Scholar 

  11. Pitzer, K.S., Das, B.: Thermodynamic properties of Na2SO4 (aq) above 200°C. Geochim. Cosmochim. Acta 62, 915–916 (1998)

    Article  CAS  Google Scholar 

  12. Obsil, M., Majer, V., Grolier, J.-P.E., Hefter, G.T.: Volumetric properties of, and ion-pairing in, aqueous solutions of alkali-metal sulfates under superambient conditions. J. Chem. Soc. Farad. Trans. 92, 4445–4451 (1996)

    Article  CAS  Google Scholar 

  13. Kim, H.-T., Frederick, W.J., Jr.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)

    Article  CAS  Google Scholar 

  14. Saluja, P.P.S., Pitzer, K.S.P., Phutela, R.C.: High-temperature thermodynamic properties of several 1:1 electrolytes. Can. J. Chem. 64, 1328–1335 (1986)

    Article  CAS  Google Scholar 

  15. Pitzer, K.S., Peiper, J.C., Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    Article  CAS  Google Scholar 

  16. Rogers, P.S.Z., Pitzer, K.S.: Volumetric properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 11, 15–81 (1982)

    Article  CAS  Google Scholar 

  17. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  18. Zafarani-Moatter, M.T., Shekhari, H.: Density and speed of sound of lithium bromide with organic solvents: measurement and correlation. J. Chem. Thermodyn. 39, 1649–1660 (2007)

    Article  Google Scholar 

  19. Das, B.: Thermodynamics of electrolytes in mixed solvent media—Application of the Pitzer ion interaction approach. Can. J. Chem. 83, 2032–2038 (2005)

    Article  CAS  Google Scholar 

  20. Yang, J.Z., Xu, W.G.: Medium effect of an organic solvent on the activity coefficients of HCl consistent with Pitzer’s electrolyte solution theory. J. Solution Chem. 34, 71–76 (2005)

    Article  CAS  Google Scholar 

  21. Nasirzadeh, K., Papaiconomou, N., Neueder, R., Kunz, W.: Vapor pressures, osmotic and activity coefficients of electrolytes in protic solvents at different temperatures. 1. Lithium bromide in methanol. J. Solution Chem. 33, 227–245 (2004)

    Article  CAS  Google Scholar 

  22. Barthel, J., Neuder, R., Wittmann, H.: Osmotic coefficients and activity coefficients of nonaqueous electrolyte solutions. Part 3. Tetraalkylammonium bromides in ethanol and 2-propanol. J. Solution Chem. 28, 1263–1276 (1999)

    Article  CAS  Google Scholar 

  23. Barthel, J., Neuder, R., Poepke, H., Wittmann, H.: Osmotic coefficients and activity coefficients of nonaqueous electrolyte solutions. Part 4. Lithium bromide, tetrabutylammonium bromide and tetrabutylammonium perchlorate in acetone. J. Solution Chem. 28, 1277–1287 (1999)

    Article  CAS  Google Scholar 

  24. Zafarani-Moattar, M.T., Nasirzade, K.: Osmotic coefficient of methanol + LiCl, + LiBr, and + LiCH3COO at 25 °C. J. Chem. Eng. Data 43, 215–219 (1998)

    Article  CAS  Google Scholar 

  25. Israfilov, H., Jannataliyev, R., Safarov, J., Shahverdiyev, A., Hassel, E.: The (p, ρ, T) properties and apparent molar volumes Vϕ of LiNO3 + C2H5OH. Acta Chim. Slov. 56, 95–108 (2009)

    CAS  Google Scholar 

  26. Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 37, 525–535 (2005)

    Article  CAS  Google Scholar 

  27. Verevkin, S., Safarov, J., Bich, E., Hassel, E., Heintz, A.: Study of vapour pressure of lithium nitrate solutions in ethanol. J. Chem. Thermodyn. 38, 611–616 (2006)

    Article  CAS  Google Scholar 

  28. Archer, D.G., Wang, P.: The dielectric constant of water and Debye–Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  29. Srinivasan, K.R., Kay, R.L.: Structural considerations from dielectric measurements on the aliphatic alcohols. J. Solution Chem. 4, 299–310 (1975)

    Article  CAS  Google Scholar 

  30. Moriyoshi, T., Ishli, T., Tamai, Y., Tado, M.: Static dielectric constants of water + ethanol and water + 2-methyl-2-propanol mixtures from 0.1 to 300 MPa at 298.15 K. J. Chem. Eng. Data 35, 17–20 (1990)

    Article  CAS  Google Scholar 

  31. Sun, T.F., Seldam, C.A.T., Kortbeek, P.J., Trappeniers, N.J., Biswas, S.N.: Acoustic and thermodynamic properties of ethanol from 273.15 to 333.15 K and up to 280 MPa. Phys. Chem. Liq. 18, 107–116 (1988)

    Article  CAS  Google Scholar 

  32. Phutela, R.C., Pitzer, K.S.: Densities and apparent molar volumes of aqueous magnesium sulfate and sodium sulfate to 473 K and 100 bar. J. Chem. Eng. Data 31, 320–327 (1988)

    Article  Google Scholar 

  33. Marcus, Y. (ed.): Ion Solvation. Wiley, New York (1985)

    Google Scholar 

  34. Campbell, A.N., Debus, G.H.: Conductances of lithium nitrate solutions in ethyl alcohol and ethyl alcohol–water mixtures at 25.0°C. Can. J. Chem. 34, 1232–1242 (1956)

    Article  CAS  Google Scholar 

  35. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  36. Marcus, Y.: The standard partial volumes of ions in solution: part 1. The volumes in single non-aqueous solvents at 298.15 K. J. Mol. Liq. 118, 3–8 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Chemistry, Presidency University, Kolkata, India, to provide the computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BD; Methodology: SP; Formal analysis and investigation: SP; Writing—original draft preparation: SP; Writing—review and editing: BD; Funding acquisition: BD; Resources: BD; Supervision: BD.

Corresponding author

Correspondence to Bijan Das.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S., Das, B. Osmotic and Activity Coefficients of Lithium Nitrate in Ethanol Under High Pressures. J Solution Chem 51, 1589–1602 (2022). https://doi.org/10.1007/s10953-022-01212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01212-9

Keywords

Navigation