Skip to main content
Log in

Activity coefficients and diffusion coefficients of dilute aqueous solutions of lithium, sodium, and potassium hydroxides

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A simplified version of Harned's conductimetric technique has been used to measure binary diffusion coefficients of aqueous lithium, sodium, and potassium hydroxides at 25°C from 0.002 to 0.14 mol-dm−3. Because of the large difference in mobility between OH and the cations, the electrophoretic effect tends to reduce the rate of diffusion of the alkali metal hydroxides; the largest effect is observed for LiOH solutions. The measured diffusion coefficients are in excellent agreement with predictions of the Onsager-Fuoss theory of ion transport. Precise activity coefficients determined from the diffusion measurements are compared with activity coefficients obtained previously by emf methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Harned and R. L. Nutall,J. Am. Chem. Soc. 69, 736 (1947).

    Google Scholar 

  2. H. S. Harned,Discuss. Faraday Soc. 24, 7 (1957).

    Google Scholar 

  3. J. A. Harpst, E. Holt, and P. A. Lyons,J. Phys. Chem. 69, 2333 (1965).

    Google Scholar 

  4. D. G. Leaist and P. A. Lyons,Aust. J. Chem. 33, 1869 (1980).

    Google Scholar 

  5. E. L. Holt and P. A. Lyons,J. Phys. Chem. 69, 2341 (1965).

    Google Scholar 

  6. D. G. Leaist and P. A. Lyons,J. Solution. Chem. 13, 77 (1984).

    Google Scholar 

  7. T. A. Renner and P. A. Lyons,J. Phys. Chem. 78, 1667 (1974).

    Google Scholar 

  8. M. V. Kulkarni and P. A. Lyons,J. Phys. Chem. 69, 2336 (1965).

    Google Scholar 

  9. D. G. Leaist and P. A. Lyons,J. Solution Chem. 10, 95 (1981).

    Google Scholar 

  10. H. S. Harned,Proc. Natl. Acad. Sci. U.S. 40, 551 (1954).

    Google Scholar 

  11. K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  12. A. K. Covington, M. I. A. Ferra, and R. A. Robinson,J. Chem. Soc., Faraday Soc. I 11, 1721 (1977).

    Google Scholar 

  13. H. Corti, R. Crovetto, and R. Fernandez-Prini,J. Solution Chem. 8, 897 (1979).

    Google Scholar 

  14. D. G. Leaist and P. A. Lyons,J. Phys. Chem. 86, 564 (1982).

    Google Scholar 

  15. D. G. Leaist,Can. J. Chem. 61, 1494 (1983).

    Google Scholar 

  16. A. D. Fary, Jr.,Ph.D. Thesis, Institute of Paper Chemistry (affiliated with Lawrence College), (1966).

  17. R. N. Bhatia, K. E. Gubbins, and R. D. Walker,Trans. Faraday Soc. 64, 2091 (1968).

    Google Scholar 

  18. H. S. Harned and D. M. French,Ann. N.Y. Acad. Sci. 46, 267 (1945).

    Google Scholar 

  19. L. S. Darken and H. F. Meier,J. Am. Chem. Soc. 64, 621 (1942).

    Google Scholar 

  20. W. C. Pierce and E. L. Haenisch,Quantitative Analysis, (Wiley, New York, 1948), p. 136.

    Google Scholar 

  21. D. A. Skoog and D. M. West,Fundamentals of Analytical Chemistry, 2nd edn., (Holt, Rinehart and Winston, New York, 1969), p. 310.

    Google Scholar 

  22. J. G. Albright and D. G. Miller,J. Phys. Chem. 79, 2061 (1975).

    Google Scholar 

  23. J. A. Rard and D. G. Miller,J. Solution Chem. 8, 755 (1979).

    Google Scholar 

  24. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Academic Press, New York, 1959), Chap. 11.

    Google Scholar 

  25. Ref. 24,, Appendix 6.1.

    Google Scholar 

  26. Ref. 24,, Appendix 1.1.

    Google Scholar 

  27. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 2nd edn., (Reinhold, New York, 1950), p. 381, p. 385.

    Google Scholar 

  28. Ref. 27,, p. 250.

    Google Scholar 

  29. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  30. G. Akerlof and P. Bender,J. Am. Chem. Soc. 70, 2366 (1948).

    Google Scholar 

  31. G. Akerlof and G. Kegeles,J. Am. Chem. Soc. 62, 620 (1940).

    Google Scholar 

  32. R. H. Stokes,J. Am. Chem. Soc. 67, 1689 (1945).

    Google Scholar 

  33. H. S. Harned and F. E. Swindells,J. Am. Chem. Soc. 48, 126 (1926).

    Google Scholar 

  34. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 51, 747 (1955).

    Google Scholar 

  35. H. S. Harned and W. J. Hamer,J. Am. Chem. Soc. 55, 2194, 4496 (1933).

    Google Scholar 

  36. H. S. Harned and G. E. Mannweiler,J. Am. Chem. Soc. 57, 1873 (1935).

    Google Scholar 

  37. H. S. Harned and H. R. Copson,J. Am. Chem. Soc. 55, 2206 (1933).

    Google Scholar 

  38. H. S. Harned and J. G. Donelson,J. Am. Chem. Soc. 59, 1280 (1937).

    Google Scholar 

  39. M. Knobel,J. Am. Chem. Soc. 45, 70 (1923).

    Google Scholar 

  40. G. Scatchard,J. Am. Chem. Soc. 47, 648 (1925).

    Google Scholar 

  41. A. Ferse,Z. Phys. Chem. (Leipzig) 229, 51 (1965).

    Google Scholar 

  42. H. S. Harned,J. Am. Chem. Soc. 47, 676 (1925).

    Google Scholar 

  43. H. S. Harned and J. C. Hecker,J. Am. Chem. Soc. 55, 4838 (1933).

    Google Scholar 

  44. H. S. Harned and M. A. Cook,J. Am. Chem. Soc. 59, 496 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noulty, R.A., Leaist, D.G. Activity coefficients and diffusion coefficients of dilute aqueous solutions of lithium, sodium, and potassium hydroxides. J Solution Chem 13, 767–778 (1984). https://doi.org/10.1007/BF00647692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647692

Key words

Navigation