Skip to main content
Log in

Local thermonuclear runaways among classical novae

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A classical nova may accrete a non-homogeneousenvelope, which can result in the ignition of a local thermonuclear runaway on the surface of the white dwarf. We studied the propagation of thermal flows along the meridian in the hydrogen rich envelope, to find the conditions under which a thermonuclear runaway is not spherically symmetric. We included mass accretion and tested the effect of temperature inhomogeneities in the secular evolution of the envelope, supposing perturbations with different wavelengths, ranging from very small to comparable with the radius of the white dwarf. The calculations were stopped at the onset of a thermonuclear runaway, when the hydrodynamic expansion starts. We found the ranges of accretion rates and masses of white dwarfs for which the runaway ignites locally. The propagation time of the runaway along the meridian may be as long as days and weeks. “Local” thermonuclear runaways can explain the asymmetries and inhomogeneities of the nova shells and account for the slow rise time to maximum (about one week) of many novae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beer A.: 1974,Vistas in Astronomy 16, 179.

    Google Scholar 

  • Clayton, D. D.: 1968, ‘Principles of Stellar Evolution and Nucleosynthesis’, McGraw Hill, New York.

    Google Scholar 

  • Diaz, Steiner: 1991,Publ. Astr. Soc. Pacific 103, 956.

    Google Scholar 

  • Duerbeck, H. W.: 1987,Space Sci. Rev. 45, 1.

    Google Scholar 

  • Durisen, R.H.: 1977,Astrophys. J., 213, 145.

    Google Scholar 

  • Fryxell, B.A.1lWoosley, S.E.: 1982,Astrophys. J., 261, 332.

    Google Scholar 

  • Fujimoto, M.Y.: 1982,Astrophys. J., 257, 752.

    Google Scholar 

  • Fujimoto M. Y.: 1988,Astron. Astrophys. 198, 163.

    Google Scholar 

  • Gallagher, J. S. and Anderson. C.M.: 1976,Astrophys. J. 203, 625.

    Google Scholar 

  • Hanawa T. and Fujimoto M.Y.: 1982,Publ. Astron. Soc. Japan 34, 495.

    Google Scholar 

  • Kaluzny, J. and Chlebowski, T.: 1988,Astrophys. J. 332, 287.

    Google Scholar 

  • King, A. and Shaviv, G.: 1984,Nature, 305, 519.

    Google Scholar 

  • Kippenhahn, R. and Thomas, H.C.: 1978,Astron. Astrophys. 63, 265.

    Google Scholar 

  • Kley, W.: 1989,Astron. Astrophys. 208, 99.

    Google Scholar 

  • Kovetz, A. and Shaviv, G.: 1972,Astron. Astrophys. 16, 72.

    Google Scholar 

  • Kutter, G.S. and Sparks, W. M.,Astrophys. J. 340, 985.

  • Livio, M.: 1991, to appear in the Proceedings of theNon Isotropic and Variable Outflows from Stars Symposium

  • Livio, M. Govarie, A. and Ritter, H.: 1991,Astron. Astrophys. 264, 84.

    Google Scholar 

  • Livio M. and Truran, J. W.: 1987,Astroph. J. 318, 316.

    Google Scholar 

  • Mc Donald, J.: 1984,Astroph. J. 283, 241.

    Google Scholar 

  • Nozakura, T., Ikeuchi, S., and Fujimoto, M.Y.: 1984,Astroph. J. 286, 221.

    Google Scholar 

  • Orio, M., Trussomi, E., and Ogelman, H.: 1992,Astron. Astrophys. 257, 548.

    Google Scholar 

  • Orio, M. and Shaviv, G.: 1989, in: G. Viotti and A. Cassatella (eds.),The Physics of Classical Novae, I.A.U. Colloquium 122, Springer Verlag Lecture Notes in Physics369, 400.

  • Paczynski, B.: 1983,Astroph. J. 264, 282.

    Google Scholar 

  • Prialnik, D.: 1986,Astroph. J. 310, 222.

    Google Scholar 

  • Prialnik, D.et al.: 1982,Astroph. J. 257, 312.

    Google Scholar 

  • Regev, O.: 1989, I.A.U. Colloquium114, Springer Verlag Lecture Notes in Physics328, 519.

    Google Scholar 

  • Robertson, J.A. and Frank, J.: 1986,Monthly Not. Roy. Astr. Soc. 221, 279.

    Google Scholar 

  • Rosino, L.: 1964,Annales d'Astrophysique 27, 498.

    Google Scholar 

  • Rosino, L. and Tempesti P.: 1977,Astron. Zeitschrift 54, 517.

    Google Scholar 

  • Shankar, A., Arnett, A, and Fryxell, B.A.: 1992, preprint.

  • Shara, M. M.: 1980,Astroph. J. 239, 581.

    Google Scholar 

  • Shara, M. M.: 1981,Astroph. J. 243, 926.

    Google Scholar 

  • Shara, M. M.: 1982,Astroph. J. 261, 649.

    Google Scholar 

  • Shara, M. M., Prialnik and Shaviv,G.: 1980,Astroph. J. 239, 586.

    Google Scholar 

  • Shara, M. M.et al.: 1986,Astropys. J. 311, 163.

    Google Scholar 

  • Shaviv, G.: 1986, IAU Coll.96, D. Reidel Publishing Comp., Dordrecht.

    Google Scholar 

  • Sparks, W. M. and Kutter, G. S.,Astroph. J. 391, 394.

  • Starrfield, S., Sparks, W. M., and Shaviv, G.: 1988,Astrophys. J. 325, L38.

    Google Scholar 

  • Starrfield, S., Sparks, W. M., and Truran, J.W.: 1976,Astrophys. J. 208, 819.

    Google Scholar 

  • Starrfield, S., Sparks, W. M., and Truran, J.W.: 1984,Astrophys. J. Suppl. Ser. 28, 247.

    Google Scholar 

  • Sung, C.H.: 1977,Astron. Astrophys. 60, 393.

    Google Scholar 

  • Weaver, H.: 1974,Highlights of Astronomy 3, 509.

    Google Scholar 

  • Zahn, J.P.: 1977,Astron. Astrophys. 57, 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orio, M., Shaviv, G. Local thermonuclear runaways among classical novae. Astrophys Space Sci 202, 273–288 (1993). https://doi.org/10.1007/BF00626882

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00626882

Keywords

Navigation