Skip to main content
Log in

A mechanistic explanation of the effect of potassium on goldfish intestinal transport

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Partial replacement of sodium by potassium or rubidium in the solution used to perfuse isolated intestinal segments of goldfish causes an increase in transmural electrical resistance. Serosal replacements have a stronger effect than mucosal replacements.

A 70% inhibition of the glucose-evoked transmural electrical current is brought about by serosal replacement of 40 mM sodium by potassium. Transmural mucosal to serosal flux of 3-O-methyl-D-glucose is also strongly inhibited by serosal potassium. These inhibitory effects of potassium do not occur when the intestinal mucosa is stripped free from the intestinal muscular layers. It is concluded that potassium-induced muscular contractures cause a decrease in transport area by pressing the mucosal folds closer against each other.

Certain effects of high potassium concentrations that have been reported in mammalian intestinal preparations may involve a similar mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus, H., Siegenbeek van Heukelom, J.: The electrophysiological characteristics of glucose absorption of the goldfish intestine as compared to mammalian intestines. Comp. Biochem. Physiol.54A, 113–119 (1976)

    Google Scholar 

  2. Alvarado, F.: Sodium activation of intestinal sugars and amino acid transport: a general or an individual effect? In: Na-linked transport of organic solutes, (E. Heinz, ed.), pp. 147–153. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  3. Alvarado, F.: Sodium-driven transport. A re-evaluation of the sodium-gradient hypotheses. In: Intestinal ion transport (J. W. L. Robinson, ed.), pp. 117–152. Lancaster: MTP Press 1976

    Google Scholar 

  4. Bolufer, J., Larralde, J.: Different response of the bird and mammal intestinal active transport to calcium. Comp. Biochem. Physiol.58A, 75–79 (1977)

    Google Scholar 

  5. Bosačková, J., Crane, R. K.: Studies on the mechanism of intestinal absorption of sugars VIII. Cation inhibition of active sugar transport and22Na influx into hamster small intestine, in vitro. Biochim. Biophys. Acta102, 423–435 (1965)

    Google Scholar 

  6. Boyd, C. A. R., Parsons, D. S.: Effects of substitution of Na on intestinal epithelial transport investigated by intermittent vascular perfusion. J. Physiol.266, 55P (1977)

    Google Scholar 

  7. Boyd, C. A. R., Cheeseman, C. I., Parsons, D. S.: Amino acid movements across the wall of anuran small intestine perfused through the vascular bed. J. Physiol.250, 409–429 (1975)

    Google Scholar 

  8. Caldwell, J. H., Martin, J. F., Dutta, S., Greenberger, N. J.: Intestinal absorption of digoxin —3H in the rat. Am. J. Physiol.217, 1747–1751 (1969)

    Google Scholar 

  9. Caldwell, J. H., Halpin, T. C., Greenberger, N. J.: Intestinal absorption of3H-ouabain: Demonstration of a nonsaturable transport process. J. lab. Clin. Med.75, 43–52 (1970)

    Google Scholar 

  10. Crane, R. K., Forstner, G., Eichholz, A.: Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. Biophys.109, 467–477 (1965)

    Google Scholar 

  11. Csaky, T. Z., Thale, M.: Effect of ionic environment on intestinal sugar transport. J. Physiol.151, 59–65 (1960)

    Google Scholar 

  12. Curran, P. F., Schultz, S. G., Chez, R. A., Fuisz, R. E.: Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. Gen. Physiol.50, 1261–1286 (1967)

    Google Scholar 

  13. Dibona, D. R., Civan, M. M.: The effect of smooth muscles on the intercellular spaces in toad urinary bladder. J. Cell. Biol.46, 235–244 (1970)

    Google Scholar 

  14. Dibona, D. R., Civan, M. M.: Clarification of the intercellular space phenomenon in toad urinary bladder. J. Membrane Biol.7, 267–274 (1972)

    Google Scholar 

  15. Frizzell, R. A., Schultz, S. G.: Ionic conductances of extracellular shunt pathway in rabbit ileum. Influences of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol.59, 318–346 (1972)

    Google Scholar 

  16. Frömter, E., Diamond, J. M.: Route of passive ion permeation in epithelia. Nature New Biol.235, 9–13 (1972)

    Google Scholar 

  17. Hoshi, T., Suzuki, Y., Kusachi, T., Igarashi, Y.: Interrelationship between sugar evoked increases in transmural potential differences and sugar influxes across the mucosal border in the small intestine. Tohoku J. exp. Med.119, 201–209 (1976)

    Google Scholar 

  18. Kojima, S., Miyake, J.: Factors influencing absorption and excretion of drugs. V. Further study on effect of potassium ion on in situ rat intestinal absorption of drugs. Chem. Pharm. Bull. (Tokyo)24, 894–900 (1976)

    Google Scholar 

  19. Mayersohn, M., Gibaldi, M.: Drug transport II. The effect of various cations on the passive transfer of drugs across the everted rat intestine. Biochim. Biophys. Acta196, 296–304 (1970)

    Google Scholar 

  20. Moreno, J. H., Diamond, J. M.: discrimination of monovalent inorganic cations by tight junctions of gallbladder epithelium. J. Membrane Biol.15, 277–318 (1974)

    Google Scholar 

  21. Naftalin, R., Curran, P. F.: Galactose transport in rabbit ileum. J. Membrane Biol.16, 257–278 (1974)

    Google Scholar 

  22. Rinaldo, J. E., Jennings, B. L., Frizzell, R. A., Schultz, S. G.: Effects of unilateral sodium replacement on sugar transport across in vitro rabbit ileum. Am. J. Physiol.228, 854–860 (1975)

    Google Scholar 

  23. Robinson, J. W. L.: Comparative aspects of the response of the intestine to its ionic environment. Comp. Biochem. Physiol.34, 641–655 (1970)

    Google Scholar 

  24. Schlenker, J. D., Robinson, J. W. L.: Studies on the permeability barrier to amino acid penetration of the intestinal mucosa during incubation in vitro in a Na+-free buffer. Pflügers Arch.294, 169–181 (1967)

    Google Scholar 

  25. Schultz, S. G., Fuisz, R. E., Curran, P. F.: Amino acid and sugar transport in rabbit ileum. J. Gen. Physiol.49, 849–866 (1966)

    Google Scholar 

  26. Schultz, S. G., Curran, P. F., Wright, E. M.: Interpretation of hexose-dependent electrical potential differences in small intestine. Nature214, 509–510 (1967)

    Google Scholar 

  27. Schultz, S. G., Curran, P. F., Chez, R. A., Fuisz, R. E.: Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol.50, 1241–1260 (1967)

    Google Scholar 

  28. Slein, M. W.:D-Glucose Bestimmung mit Hexokinase und Glucose-6-Phosphat-Dehydrogenase. In: Methoden der enzymatischen Analyse (H. U. Bergmeyer, ed.), pp. 117–130 Weinheim: Verlag Chemie 1962

    Google Scholar 

  29. Smith, M. W.: Sodium-glucose interaction in the goldfish intestine. J. Physiol.182, 559–573 (1966)

    Google Scholar 

  30. Syson, A. J., Huddart, H.: Contracture tension in rat vas deferens and ileal smooth muscle and its modification by external calcium and the tonicity of the medium. Comp. Biochem. Physiol.45A, 345–362 (1973)

    Google Scholar 

  31. Winne, D.: Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta298, 27–31 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groot, J.A., Albus, H. & Siegenbeek van Heukelom, J. A mechanistic explanation of the effect of potassium on goldfish intestinal transport. Pflugers Arch. 379, 1–9 (1979). https://doi.org/10.1007/BF00622898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00622898

Key words

Navigation