Skip to main content
Log in

Modelling and analysis of multilayered shells based on a timoshenko-type theory with six degrees of freedom

  • Published:
Mechanics of Composite Materials Aims and scope

Conclusions

In this paper a theoretical approach to multilayered shell and plate analysis based on a kinematical model with six degrees of freedom is presented. The theory has been confirmed by some numerical examples. From these we draft the following conclusions:

  1. 1.

    The theory proposed for laminates can be used successfully also in the case of thin sandwich structures. It seems that the determination of stiffnesses is not so sensitive with regard to the ratios of the elastic moduli.

  2. 2.

    In the case of fibre reinforced laminates the results show a strong dependence not only on the fibre orientation angle, but also on the kind of lamination. These phenomena can be explained by the transformation rules of the local stiffness values. In many practical situations, simplified calculation formulae can be used for the local stiffness.

  3. 3.

    The results based on models with five or six degrees of freedom are very similar to standard situations with a simple geometry. In the cases of complicated geometries a model of six-degree-freedom provides a better agreement with results of there authors.

  4. 4.

    Further investigations should be continued on the effect of shear correction factors (see, e.g. [24]) and new classes of shell problems (stability, failure and inelastic material behavior).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Dordrech: Martinus Nijhoff (1987).

    Google Scholar 

  2. V. V. Vasiliev and Yu. M. Tarnopolsky, Composite Materials (Manual), Moscow, Mashinostroenie [in Russian] (1990).

    Google Scholar 

  3. V. V. Bolotin and Yu. N. Novikov, Mechanics of Multilayered Structures Mashinostroenie Moscow [in Russian] (1990).

    Google Scholar 

  4. N. A. Alfutov, P. A. Zinov'ev, and B. G. Popov, Analysis of Multilayered Plates and Shells made from Composite Materials [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  5. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga (1980).

    Google Scholar 

  6. Yu.M. Tarnopol'skii, “Composite materials engineering of the USSR,” Mekh. Kompozitn. Mater., No. 5, 787–795 (1991).

    Google Scholar 

  7. J. N. Reddy, A Simple Higher-order Theory for Laminated Composite Plates, Trans. ASME: J. Appl. Mech., 51, p. 175–752 (1984).

    Google Scholar 

  8. T. Lewinski, “On refined plate models based on kinematical assumptions,” Ingenier Archiv., 57, 133–146 (1987).

    Google Scholar 

  9. I. Elishakoff and H. Irretier (eds.) Refined Dynamical Theories of Beams, Plates and Shells and Their Applications Springer, Berlin (1987).

    Google Scholar 

  10. W. Wunderlich, “Vergleich verschiedener Approximationen der theorie dünner Schalen (mit numerischen Beispielen),” Techn.-Wiss. Mitt. des Instituts für Konstruktiven Ingenieurbau der Ruhr-Universitä bochum. 73–1 (1973).

    Google Scholar 

  11. E. Reissner, “Reflections on the theory of elastic plates,” Appl. Mech. Rev., No. 11,38, 1453–1464 (1985).

    Google Scholar 

  12. A. K. Noor and W. S. Burton, “Assesment of computational models for multilayered composite shells,” Appl. Mech. Rev.,43, No. 4, 67–97 (1990).

    Google Scholar 

  13. R. B. Rikards, The Finite Element Method in the Theory of Shells and Plates [in Russina], Zinatne, Riga (1986).

    Google Scholar 

  14. H. Eschenauer and W. Schnell and Elastizitätstheorie II. Mannheim: Wissenschafsverlag (1986).

  15. J. R. Vinson and T. Chou, Composite Materials and Their Use in Structures, London: Appl. Sci. Publ. (1975).

    Google Scholar 

  16. T. Kant, Thick Shells of Revolution, Some Studies. Bombay (1976).

  17. J. N. Reddy and C. F. Liu, “A higher order shear theory of laminated elastic shells,” Intern. J. Eng. Sci.23, No. 3 319–330 (1985).

    Google Scholar 

  18. J. N. Reddy, Analysis of Laminated Composite Structures, Springer, Berlin (Lecurure Notes in Engineering 37) (1988).

    Google Scholar 

  19. E. Hinton, D. R. J. Owen, and G. Krause, Finite Elements Programme für Plattern und Schalen., Springer, Berlin (1990).

    Google Scholar 

  20. T. P. Kant, Doctor-Thesis, Dept. of Civil eng., Indian Institute of Technology, Bombay (1988).

    Google Scholar 

  21. T. Kant, M. P. Menon, “Higher-order theories for composite and sandwich cylindrical shells with C ° finite element,” Computer and Structures,33, No. 5, 1191–1204 (1989).

    Google Scholar 

  22. J. Bühlmeier, Ein Beltrag zur natürlichen formulierung von Plattenund Schalenelementen beliebiger Dicke, Diss. Universität Stuttgart (1983).

  23. O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London (1977).

    Google Scholar 

  24. R. B. Rikards, A. K. Chate, and M. L. Kenzer, “Methods of averaging the shear stiffness of multilayered structures in calculating the frequencies according to the timoshenko model,” Voprosy Dinamiki i Prochnosti,52, 176–193 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Mekhanika Kompozitnykh Materialov, Vol. 29, No. 4, pp. 500–511, July–August, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Altenbach, J. & Nast, E. Modelling and analysis of multilayered shells based on a timoshenko-type theory with six degrees of freedom. Mech Compos Mater 29, 374–384 (1994). https://doi.org/10.1007/BF00617163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617163

Keywords

Navigation