Skip to main content
Log in

Kinetics of oxide film growth on metal crystals: Space-charge-modified thermal electron emission and ionic diffusion. Part 1. Pertinent equations

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A complete prototype coupled-currents calculation for metal oxidation has been carried out for a model based on ionic diffusion and thermal electron emission in the presence of space charge of the diffusing ionic species. This theoretical and numerical work is presented in two parts. In Part 1, the analytical equations for species transport are developed, and the approach for coupling these equations to deduce the kinetics of metal oxidation is outlined. The space-charge-modified ionic defect profiles can be expressed exactly in terms of Airy functions. These profiles lead in turn to analytical expressions for the total energy barrier for thermal electron emission. This is important both for metal oxidation and in devices utilizing electron emission from metals which are covered with oxides and similar dielectric layers. In Part 2, the results of extensive numerical computations for the model are presented. These calculations have led to a full understanding of the predictions of the model, the most important of which are the following: (a) In the early growth stage, the negative surface-charge field is an order of magnitude or so larger than its homogeneous field counterpart; this significantly aids the injection of rate-limiting electronic carriers into the conduction band of the oxide, and the oxide growth rate is thereby enhanced, (b) In the later stages of growth where the ionic species becomes rate-limiting, the space charge of the diffusing ions causes a marked retardation of the ionic current and the accompanying oxide film growth, (c) The transition from electron rate-limited growth occurs shortly after the classical electron energy barrier maximum switches from inside the film (Schottky-type emission) to a space-charge-produced barrier maximum at the outer interface of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner,Z. Physik. Chem. B21, 25 (1933).

    Google Scholar 

  2. J. Frenkel,Z. Physik 35, 652 (1926).

    Google Scholar 

  3. C. Wagner and W. Schottky,Z. Physik. Chem. B11, 163 (1931).

    Google Scholar 

  4. W. Schottky,Z. Physik. Chem. B29, 335 (1935).

    Google Scholar 

  5. P. Debye,Z. Physik. 18, 144 (1917).

    Google Scholar 

  6. W. Nernst,Z. Physik.Chem. 2, 613 (1888).

    Google Scholar 

  7. A. Einstein,Ann. Physik 17, 549 (1905).

    Google Scholar 

  8. N. F. Mott and R. W. Gurney,Electronic Processes in Ionic Crystals (Dover Publications, Inc., New York, 1964), p. 63.

    Google Scholar 

  9. W. Jost,Diffusion in Solids, Liquids, Gases (Academic Press, Inc., New York, 1960), p. 139.

    Google Scholar 

  10. F. A. Kröger,The Chemistry of Imperfect Crystals (North-Holland Publishing Co., Amsterdam, 1964), p. 796.

    Google Scholar 

  11. W. Shockley,Electrons and Holes in Semiconductors (D. Van Nostrand Co., Inc., Princeton, N.J., 1966), p. 299.

    Google Scholar 

  12. A. T. Fromhold, Jr.,J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  13. N. F. Mott,Trans. Faraday Soc. 43, 429 (1947).

    Google Scholar 

  14. N. F. Mott,Trans. Faraday Soc. 35, 1175 (1939);36, 472 (1940).

    Google Scholar 

  15. E. J. W. Verwey,Physica 2, 1059 (1935).

    Google Scholar 

  16. A. T. Fromhold, Jr., and E. L. Cook,J. Appl. Phys. 38, 1546 (1967).

    Google Scholar 

  17. N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  18. A. T. Fromhold, Jr., and E. L. Cook,Phys. Rev. 158, 600 (1967).

    Google Scholar 

  19. A. T. Fromhold, Jr., and E. L. Cook,Phys. Rev. 163, 650 (1967).

    Google Scholar 

  20. A. T. Fromhold, Jr., and E. L. Cook,Phys. Rev. Lett. 17, 1212 (1966).

    Google Scholar 

  21. J. E. Boggio,J. Chem. Phys. 53, 3544 (1970).

    Google Scholar 

  22. A. T. Fromhold, Jr., and E. L. Cook,Phys. Rev. 175, 877 (1968).

    Google Scholar 

  23. A. T. Fromhold, Jr.,Phys. Lett. 29A, 157 (1969).

    Google Scholar 

  24. A. T. Fromhold, Jr.,J. Chem. Phys. 51, 1143 (1969).

    Google Scholar 

  25. A. T. Fromhold, Jr.,J. Phys. Chem. Solids 24, 1081 (1963).

    Google Scholar 

  26. A. T. Fromhold, Jr., S. R. Coriell, and J. Kruger,J. Phys. Soc. Japan 34, 1452 (1973).

    Google Scholar 

  27. A. T. Fromhold, Jr.,Surface Sci. 22, 396 (1972).

    Google Scholar 

  28. J. V. Cathcart, J. E. Epperson, and G. F. Petersen,Acta Met. 10, 699 (1962).

    Google Scholar 

  29. C. Wagner,Corrosion Sci. 13, 23 (1973).

    Google Scholar 

  30. A. T. Fromhold, Jr.,J. Phys. Chem. Solids 25, 1129 (1964).

    Google Scholar 

  31. A. T. Fromhold, Jr.,J. Chem. Phys. 40, 3335 (1964).

    Google Scholar 

  32. A. T. Fromhold, Jr., and E. R. Graf,J. Chem. Phys. 44, 1628 (1966).

    Google Scholar 

  33. K. Haufle, L. Pethe, R. Schmidt, and S. R. Morrison,J. Electrochem. Soc. 115, 456 (1968).

    Google Scholar 

  34. See Ref. 8, p. 172.

    Google Scholar 

  35. M. A. Lampert and P. Mark,Current Injection in Solids (Academic Press, New York and London, 1970).

    Google Scholar 

  36. F. P. Fehlner and N. F. Mott,Oxidation of Metals 2, 59 (1970).

    Google Scholar 

  37. See Ref. 12, pp. 96–97.

    Google Scholar 

  38. E. L. Ince,Ordinary Differential Equations (Dover Publications, Inc., New York, 1956), p. 23.

    Google Scholar 

  39. U.S. National Bureau of Standards,Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds. (U.S. Government Printing Office, Washington, D.C., 1964), pp. 446–447.

    Google Scholar 

  40. C. Kittel,Introduction to Solid State Physics (John Wiley and Sons, Inc., New York, 1966), 3rd ed., pp. 246–247.

    Google Scholar 

  41. N. D. Lang and W. Kohn,Phys. Rev. B3, 1215 (1971).

    Google Scholar 

  42. T. A. Jeeves,Comm. Assoc. Comp. Mach. 1, 9 (1958).

    Google Scholar 

  43. P. Wolfe,Comm. Assoc. Comp. Mach. 2, 12 (1959).

    Google Scholar 

  44. N. F. Mott,J. Chim. Phys. 44, 172 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was performed at Auburn University in partial fulfillment of the requirements for the Ph.D. degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosley, R.B., Fromhold, A.T. Kinetics of oxide film growth on metal crystals: Space-charge-modified thermal electron emission and ionic diffusion. Part 1. Pertinent equations. Oxid Met 8, 19–46 (1974). https://doi.org/10.1007/BF00612173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612173

Keywords

Navigation