Mechanics of Composite Materials

, Volume 20, Issue 1, pp 52–58 | Cite as

Initial stages of failure of an orthogonally reinforced composite material

  • Z. T. Upitis
  • I. V. Builis
  • U. É. Krauya
  • V. I. Kulik
Article

Conclusions

  1. 1.

    ML is the result of crack formation in the hybrid composite material.

     
  2. 2.

    The loss of continuity in uniaxial loading can be recorded both by the ML method and (in individual cases) by strain gauging.

     
  3. 3.

    For the hybrid composite in combined loading in the plane stress state, ML indicates (in contrast to strain gauging) the instant of the start of cracking.

     

Keywords

Stress State Composite Material Individual Case Plane Stress Crack Formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. V. Tsai and V. D. Adzi, “Strength of layered composite materials,” Raket. Tekh. Kosmon., No. 2, 142–147 (1966).Google Scholar
  2. 2.
    V. V. Vasil'ev and A. N. Elpat'evskii, “Special features of deformation of cylindrical shells produced by winding unidirectional glass tape, under the effect of internal pressure,” Mekh. Polim., No. 5, 915–920 (1967).Google Scholar
  3. 3.
    V. V. Vasil'ev, A. A. Dudchenko, and A. N. Elpat'evskii, “Special features of deformation of an orthotropic fiberglass plastic in tensile loading,” Mekh. Polim., No. 1, 144–147 (1970).Google Scholar
  4. 4.
    V. A. Kolgadin, “Stresses and strains in a PPN fiberglass plastic in tensile loading,” Probl. Prochn., No. 12, 9–13 (1971).Google Scholar
  5. 5.
    S. Tsai and Kh. Khan, “Analysis of composite failure,” in: Inelastic Properties of Composite Materials [in Russian], Moscow (1978), pp. 104–109.Google Scholar
  6. 6.
    V. V. Partsevskii, “Cracking of a layered composite reinforced in two directions,” Probl. Prochn., No. 10, 76–77 (1978).Google Scholar
  7. 7.
    V. V. Bolotin, “Strength, stability, and oscillations of multiply sheets,” in: Strength Calculations [in Russian], No. 1, Moscow (1965), pp. 31–63.Google Scholar
  8. 8.
    S. F. Kuznetsov and V. V. Partsevskii, “Mechanism of deformations and failure of multidirectional composite materials,” Mekh. Kompozitn. Mater., No. 6, 1006–1011 (1981).Google Scholar
  9. 9.
    A. M. Skudra and F. Ya. Bulavs, Structural Theory of Reinforced Plastics [in Russian], Riga (1978).Google Scholar
  10. 10.
    A. M. Skudra, “Structural theory of the strength of reinforced plastics in tensile and compressive loading,” Mekh. Polim., No. 6, 988–995 (1975).Google Scholar
  11. 11.
    A. M. Skudra and F. Ya. Bulavs, “Generalized structural criteria of the strength of reinforced plastics for the plane stress state,” Mekh. Kompozitn. Mater., No. 4, 626–633 (1982).Google Scholar
  12. 12.
    R. B. Rikards and A. K. Chate, “Initial failure surfaces of orthogonally reinforced composites,” in: Mechanics of Deformed Media [in Russian], No. 4, Kuibyshev (1979), pp. 97–107.Google Scholar
  13. 13.
    G. A. Teters, U. É. Krauya, R. B. Rikards, and Z. T. Upitis, “Examination of failure of composites in the plane stress state by the mechanoluminescence method,” Mekh. Kompozitn. Mater., No. 3, 537–545 (1982).Google Scholar
  14. 14.
    P. H. Francis, D. E. Wlarath, and D. N. Weld, “First ply failure of graphite/epoxy laminates under biaxial loadings,” Fiber Sci. Technol., No. 2, 97–110 (1979).Google Scholar
  15. 15.
    R. Y. Kim and H. T. Hahn, “Effect of curing stresses on the first ply failure in composite laminates,” J. Compos. Mater.,13, January, 2–16 (1979).Google Scholar
  16. 16.
    U. K. Vilks, “A device for strain measurements,” Inventor's Certificate No. 355486, Soviet Union, Otkrytiya. Izobret. Prom. Obraztsy. Tov. Zn., No. 31 (1972).Google Scholar
  17. 17.
    U. É. Krauya, Z. T. Upitis, and Ya. L. Yansons, “Nature of mechanoluminescence in loading certain composite materials,” Mekh. Kompozitn. Mater., No. 5, 914–919 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Z. T. Upitis
    • 1
    • 2
  • I. V. Builis
    • 1
    • 2
  • U. É. Krauya
    • 1
    • 2
  • V. I. Kulik
    • 1
    • 2
  1. 1.Institute of Polymer MechanicsAcademy of Sciences of the Latvian SSRRiga
  2. 2.Leningrad Mechanical InstituteUSSR

Personalised recommendations