Skip to main content
Log in

Failure of Unidirectional Fiber Reinforced Composites: A Case Study in Strength of Materials

  • Published:
Mechanics of Composite Materials Aims and scope

The traditional approach of strength of materials applied to failure of unidirectional fiber reinforced composites is examined in view of the failure mechanisms observed. While the elastic limit of isotropic materials such as metals is given by the measured yield strength and reflects the manifestation of the underlying crystalline slip processes that is not the case for unidirectional composites that are orthotropic and have different independent mechanisms operative under axial tension, axial compression, transverse tension, transverse compression, and in-plane shear. The paper discusses why the generalization of yield theories of isotropic metals to textured metals of orthotropic symmetry cannot be used for describing failure of unidirectional composites. Furthermore, the failure criteria proposed in the literature to describe interactions under combined loading are scrutinized to clarify their inadequacy to treat those interactions. The use of tractions on an assumed failure plane to formulate failure criteria is also discussed as without basis in the failure mechanisms observed. Finally, a way forward for physical modeling of failure in unidirectional composites is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. Morley, A., Strength of materials, Longmans, London (1920).

    Google Scholar 

  2. S. P. Timoshenko, History of Strength of Materials, McGraw Hill, New York (1953).

    Google Scholar 

  3. Z. Zhang, C. Shao, S.Wang, X. Luo, K. Zheng, and H. M. Urbassek, “Interaction of dislocations and interfaces in crystalline heterostructures: A review of atomistic studies,” Crystals, 9, No. 11, 584 (2019).

    Google Scholar 

  4. R. Hill, “A theory of the yielding and plastic flow of anisotropic materials,” Proc. R. Soc. A, 193, 281-297 (1948).

    CAS  Google Scholar 

  5. V. D. Azzi and S. Tsai, “Anisotropic strength of composites,” Experimental Mechanics, 5, 283-288 (1965).

    Article  Google Scholar 

  6. M. Fuwa, A.R., Bunsell, and B. Harris, “Tensile failure mechanisms in carbon fibre reinforced plastics,” J. Mater. Sci., 10, 2062-2070 (1975).

  7. D. Purslow, “Some fundamental aspects of composites fractography,” Composites, 12, 241-247 (1981).

    Article  CAS  Google Scholar 

  8. S. Mahesh, S. L. Phoenix, and I. J. Beyerlein, “Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix,” Int. J. Fracture, 115, No.1, 41-85 (2002).

    Article  Google Scholar 

  9. D. R. B. Aroush, E. Maire, C. Gauthier, S. Youssef, P. Cloetens, and H. D. Wagner, “A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography,” Compos. Sci. and Technol. 66, No.10, 1348-1353 (2006).

    Article  CAS  Google Scholar 

  10. B. W. Rosen, “Mechanics of composite strengthening”, Ch. 3 in: Fiber Composite Materials, Am Soc Metals, Metals Park, Ohio (1965).

  11. A. S. Argon, “Fracture of Composites”, In: Treatise of Materials Science and Technology, Vol. 1, Academic Pres, New York, 79-114 (1972).

  12. B. Budiansky, “Micromechanics,” Computers and Structures, 16, 1-4 (1983).

    Article  Google Scholar 

  13. S. Pimenta, R. Gutkin, S.T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. and Technol., 69, No.7–8, 948–955 (2009).

    Article  Google Scholar 

  14. B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Physics of Solids, 41, No. 1, 183-211 (1993).

    Article  Google Scholar 

  15. P. Kulkarni, K. D. Mali, and S. Singh, “An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites,” Compos., Part A, 137, 106013 (2020).

  16. C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks,” Compos. Sci. and Technol., 59, No.12, 1779-1788 (1999).

    Article  Google Scholar 

  17. K. Oguni, C. Y. Tan, and G. Ravichandran, “Failure mode transition in unidirectional E-glass/vinylester composites under multiaxial compression,” J. Compos. Mater., 34, No. 24, 2081-2097 (2000).

    Article  CAS  Google Scholar 

  18. T. J. Vogler, S. Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids and Structures, 37, No.12, 1765-1791 (2000).

    Article  Google Scholar 

  19. S. Basu, A. M. Waas, and D. R. Ambur, “Compressive failure of fiber composites under multi-axial loading,” Journal of the Mechanics and Physics of Solids, 54, 611-634 (2006).

    Article  CAS  Google Scholar 

  20. R. Talreja and C. V. Singh, Damage and Failure of Composite Materials, Cambridge University Press, Cambridge (2012).

    Book  Google Scholar 

  21. L. E. Asp, L. A. Berglund, and P. Gudmundson, “Effects of a composite-like stress state on the fracture of epoxies,” Compos. Sci. and Technol., 53, 27-37 (1995).

    Article  CAS  Google Scholar 

  22. L. E. Asp, L. A. Berglund, and R. Talreja, “Prediction of matrix initiated transverse failure in polymer composites,” Composites Science and Technology, 56, 1089-1097 (1996).

    Article  CAS  Google Scholar 

  23. L. E. Asp, L. A. Berglund, and R. Talreja, “A criterion for crack initiation in glassy polymers subjected to a compositelike stress state,” Compos. Sci. and Technol., 56, 1291-1301 (1996).

    Article  CAS  Google Scholar 

  24. S.A. Elnekhaily and R. Talreja, “Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution,” Compos. Sci. and Technol., 155, 22-32 (2018).

    Article  CAS  Google Scholar 

  25. A. Sudhir and R. Talreja, “Simulation of manufacturing induced fiber clustering and matrix voids and their effect on transverse crack formation in unidirectional composites,” Compos., Part A, 127, 105620 (2019).

  26. L. Zhuang, R. Talreja, and J. Varna, “Transverse crack formation in unidirectional composites by linking of fibre/matrix debond cracks,” Compos., Part A, 107, 294-303 (2018).

    Article  CAS  Google Scholar 

  27. L. Zhuang, A. Pupurs, J. Varna, R. Talreja, and Z. Ayadi, “Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites under transverse loading,” Compos., Part A, 109, 463-471 (2018).

    Article  CAS  Google Scholar 

  28. E. K. Gamstedt and B. A. Sjogren, “Micromechanisms in tension-compression fatigue composite laminates containing transverse plies,” Compos. Sci. and Technol., 59,167-178 (1999).

    Article  CAS  Google Scholar 

  29. S. A. Elnekhaily and R. Talreja, “Effect of axial shear and transverse tension on early failure events in unidirectional polymer matrix composites,” Compos., Part A, 119, 275-282 (2019).

    Article  CAS  Google Scholar 

  30. C. Gonzalez and J. LLorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. and Technol., 67, 2795-2806 (2007).

  31. Y. Hu, N. K. Kar, and S. R. Nutt, “Transverse compression failure of unidirectional composites,” Polymer Compos., 36, No. 4, 756-766 (2015).

    Article  CAS  Google Scholar 

  32. J. Gu, J. P. Chen, L. Su, and K. Li, “A theoretical and experimental assessment of 3D macroscopic failure criteria for predicting pure inter-fiber fracture of transversely isotropic UD composites,” Compos. Struct., 259, 113466 (2021).

    Article  CAS  Google Scholar 

  33. G. Terry, “A comparative investigation of some methods of unidirectional, in-plane shear characterization of composite materials,” Composites, 10, 233-237 (1979).

    Article  Google Scholar 

  34. W. van Paepegem, I. de Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part I: Experimental results,” Compos. Sci. and Technol., 66, 1455-1464 (2006).

    Article  Google Scholar 

  35. F. Pierron and A. Vautrin, “New ideas on measurement of the in-plane shear strength of unidirectional composites,” J. Compos. Mater., 31, 889-895 (1997).

    Article  Google Scholar 

  36. P. A. Carraro and M. Quaresimin, “A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading,” Compos. Sci. and Technol., 99, 154-163 (2014).

    Article  CAS  Google Scholar 

  37. M. Quaresimin and P. A. Carraro, “Damage initiation and evolution in glass/epoxy tubes subjected to combined tension– torsion fatigue loading,” Int. J. Fatigue, 63, 25-35 (2014).

    Article  CAS  Google Scholar 

  38. O. Redon, “Fatigue damage development and failure in unidirectional and angle-ply glass fibre/carbon fibre hybrid laminates”, Technical Report Risø-R-1168, Risø National Laboratory, Roskilde, Denmark (2000).

  39. A. Plumtree and L. Shi, “Fatigue damage evolution in off-axis unidirectional CFRP,” Int. J. Fatigue, 24, 155-159 (2002).

    Article  CAS  Google Scholar 

  40. S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).

    Article  Google Scholar 

  41. I. I. Goldenblatt and V. A. Kopnov, “Strength criteria for anisotropic materials,” Izvestia Academy Nauk USSR, Mechanika, 6, 77–83 (1965).

    Google Scholar 

  42. Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).

    Article  Google Scholar 

  43. A. Puck and H. Schumann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. and Technol., 58, 1045-1067 (1998).

    Article  Google Scholar 

  44. C. G. Davila, P. P. Camanho, and C. A. Rose, “Failure criteria for FRP laminates,” J. Compos. Mater., 39, No. 4, 323-345 (2005).

    Article  CAS  Google Scholar 

  45. S. T. Pinho, L. Iannucci and P. Robinson, “Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development,” Compos., Part A, 37, No. 1, 63-73 (2006).

    Article  CAS  Google Scholar 

  46. R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Compos. Sci. and Technol., 105, 190-201 (2014).

    Article  Google Scholar 

  47. J. Segurado and J. LLorca, “A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites,” Acta Materialia, 53, No.18, 4931-4942 (2005).

  48. J. Segurado and J. LLorca, “Computational micromechanics of composites: the effect of particle spatial distribution,” Mech. Mater., 38, No. 8-10, 873-883 (2006).

  49. E. Totry, C. González, and J. LLorca, J., “Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear,” Compos. Sci. and Technol., 68, No. 3-4, 829-839 (2008).

  50. M. I. Okereke, A. I. Akpoyomare, and M. S. Bingley, “Virtual testing of advanced composites, cellular materials and biomaterials: a Review,” Compos., Part B, 60, 637-662 (2014).

    Article  CAS  Google Scholar 

  51. A. R. Melro, P. P. Camanho, F. A. Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I–Constitutive modelling,” Int. J. Solids and Structures, 50, No.11-12, 1897-1905 (2013).

    Article  CAS  Google Scholar 

  52. A. Neogi, A., N. Mitra, and R. Talreja, “Cavitation in epoxies under composite-like stress states,” Compos., Part A, 106, 52-58 (2018).

  53. R. M. Christensen, “Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results,” Compos. Sci. and Technol., 182, 107718 (2019).

    Article  CAS  Google Scholar 

  54. E. Correa, V. Mantič, and F. París, “A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres,” Compos. Sci. and Technol., 68, No. 9, 2010-2021 (2008).

    Article  CAS  Google Scholar 

  55. R. Talreja, and A. M. Waas, “Concepts and definitions related to mechanical behavior of fiber reinforced composite materials,” Compos. Sci. and Technol., 217, 109081 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Talreja.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talreja, R. Failure of Unidirectional Fiber Reinforced Composites: A Case Study in Strength of Materials. Mech Compos Mater 59, 173–192 (2023). https://doi.org/10.1007/s11029-023-10091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10091-0

Keywords

Navigation