Skip to main content
Log in

Quantitative modeling of quasibrittle fracture. Application to the problem of interaction and coalescence of cracks in polymers

  • Published:
Mechanics of Composite Materials Aims and scope

Conclusions

The results of qualitative and quantitative analysis of the interaction and coalescence of the cracks indicate that the role of these effects in accelerating quasibrittle fracture cannot be controlling. The largest reduction of the strength and endurance of the brittle, bodies is associated with the formation of a single crack of the largest dimension. The appearance of a large number of smaller cracks has only a slight effect on the further reduction of strength and increases the effective cracking resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. P. Tamuzh and V. S. Kuksenko, Micromechanics of Fracture of Polymer Materials [in Russian], Riga (1978).

  2. V. I. Vettegren', V. S. Kuksenko, D. I. Frolov, and A. E. Chmel', ″The mechanism of propagation of the main crack in polymers,″ Mekh. Kompozitn. Mater., No. 5, 771–775 (1979).

    Google Scholar 

  3. A. M. Krasnikov, ″Taking into account the coalescence of microcracks in a statistical kinetic model of fracture in uniaxial tensile loading of the material,″ Mekh. Kompozitn. Mater., No. 1, 52–60 (1983).

    Google Scholar 

  4. L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Stashchuk, Interaction of Rigid Linear Inclusions and Cracks in the Deformed Solid [in Russian], Kiev (1983).

  5. N. B. Romalis and V. P. Tamuzh, ″Propagation of the main crack in the solid with distributed microcracks,″ Mekh. Kompozitn. Mater., No. 1, 42–51 (1984).

    Google Scholar 

  6. A. Chudnovskii (Chudnovsky) and M. Kachanov, ″Interaction of a crack with a field of microcracks,″ Int. J. Eng. Sci.,21, No. 2, 1009–1018 (1983).

    Google Scholar 

  7. A. M. Leksovskii, B. L. Baskin, A. Ya. Gorenberg, G. Kh. Usmanov, and V. R. Regel', ″Examination of propagation of microcracks in polymers by SEM method in situ,″ Fiz. Tverd. Tela,25, No. 4, 1096–1102 (1983).

    Google Scholar 

  8. A. M. Leksovskii, ″Kinetics of fracture development in fiber-reinforced composite materials,″ in: Kinetics of Deformation and Fracture of Composite Materials [in Russian], Leningrad (1983), pp. 112–132.

  9. V. I. Aleshin, N. A. Dolotova, and M. I. Bessonov, ″A method of measuring-stress intensity factor KI in the conditions of quasibrittle fracture using organic glass models,″ Zavod. Lab.,50, No. 2, 67–71 (1984).

    Google Scholar 

  10. V. I. Aleshin, N. A. Dolotova, and M. I. Bessonov, ″Failure of sheets with two cracks,″ Tr. Nauchno-Tekh. Ova im. Akad. Krylova, No. 393 (1984), pp. 59–67.

    Google Scholar 

  11. P. S. Theocaris, ″Optical method of caustics in the study of dynamic problems of running cracks,″ Opt. Eng.,21, No. 4, 581–601 (1982).

    Google Scholar 

  12. P. Manogg, ″Shadow optical measurements of specific fracture energy in fracture propagation in plexiglass,″ [in German], in: Physics of Noncrystalline Solids, North-Holland, Amsterdam (1965), pp. 481–490.

    Google Scholar 

  13. S. A. Nazarov and Yu. A. Romashev, ″Variation of the stress intensity factor in fracture of a bridge between two colinear cracks,″ Izv. Akad. Nauk Arm. SSR, Mekh.,35, No. 4, 30–40 (1982).

    Google Scholar 

  14. V. I. Aleshin and E. V. Kuzshinskii, ″Crack retardation in polymethylmethacrylate,″ Fiz. Tverd. Tela,15, No. 1, 266–268 (1973).

    Google Scholar 

  15. A. S. Eremenko, S. A. Novikov, and A. P. Pogorelov, ″Examination of propagation and interaction of rapid cracks in organic glass,″ Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 109–112 (1979).

    Google Scholar 

  16. S. Melin, ″Why do cracks avoid each other?″ Int. J. Fract.,23, No. 1, 37–45 (1983).

    Google Scholar 

  17. R. P. Kusy and D. T. Turner, ″Influence of the molecular weight of poly (methylmethacrylate) on fracture morphology in notched tension,″ Polymer,18, No. 4, 391–402 (1977).

    Google Scholar 

  18. A. C. Moloney and H. H. Kaush, ″Direct observations of fracture mechanisms in epoxide resins,″ J. Mater. Sci. Lett.,4, No. 3, 280–292 (1985).

    Google Scholar 

  19. K. Friedrich, ″Formation and structure of striations in the fracture surface of glassy polystyrene,″ J. Mater. Sci.,12, No. 3, 640–462 (1977).

    Google Scholar 

  20. A. J. Sauer, K. D. Pae, and S. K. Bhateja, ″influence of pressure on yield and fracture in polymers,″ J. Macromol. Sci. Phys.,B8, No. 3–4, 631–654 (1973).

    Google Scholar 

  21. M. J. Doyle, A. Maranci, E. Orowan, and S. T. Stock, ″The fracture of glassy polymers,″ Proc. R. Soc.,A329 No. 1577, 137–151 (1972).

    Google Scholar 

  22. J. Murray and D. Hull, ″Dependence on strain rate of the nucleation of cracks in polystyrene at 293°K,″ J. Polym. Sci., A-2,8, No. 9, 1521–1543 (1970).

    Google Scholar 

  23. N. J. Mills, ″The mechanism of brittle fracture in notched impact tests on polycarbonate,″ J. Mater. Sci.,11, No. 2, 363–375 (1976).

    Google Scholar 

  24. N. J. Mills and N. Walker, ″Craze growth and crack growth in poly(vinylchloride) under monotonie and fatigue loading,″ Polymer,17, No. 4, 335–344 (1976).

    Google Scholar 

  25. J. A. Sauer and C. C. Chen, ″Crazing and fatigue in one and two-phase glassy polymers,″ in: Advances in Polymer Science, No. 52/53, Berlin (1983), pp. 169–224.

  26. F. Kerkhof, ″Wave fractographic investigations of brittle fracture dynamics,″ in: Proceedings of International Conference on Dynamic Crack Propagation, July 10–12, 1972, Leyden (1973), pp. 3–35.

  27. J. Megusar, A. S. Argon, and N. J. Grant, ″Plastic flow and fracture in PbaoSiao near Tg,″ Mater. Sci. Eng.,38, No. 1, 63–72 (1979).

    Google Scholar 

  28. D. G. Gilbert, P. W. R. Beaumont, and W. C. Nixon, ″Direct observations of dynamic fracture mechanisms in polymeric metals,″ J. Mater. Sci. Lett.,3, No. 11, 961–964 (1984).

    Google Scholar 

  29. K. Takahashi, ″Cracking of PMMA caused by plane stress waves,″ J. Macromol. Sci. Phys.,B8, No. 3–4, 673–689 (1973).

    Google Scholar 

  30. N. A. Zlatin, G. S. Pugachev, L. D. Volovets, and S. A. Leont'ev, ″Examination of the relationships governing the propagation of submicroscopic cracks in fracture of solids by pulsed loading of microsecond duration,″ Zh. Tekh. Fiz.,51, No. 7, 1507–1513 (1981).

    Google Scholar 

  31. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Moscow (1974).

  32. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, Propagation of Stresses Around Cracks in Sheets and Shells [in Russian], Kiev (1976).

  33. V. I. Aleshin, É. L. Aéro, and E. V. Kuvshinskii, ″Kinetics of growth of the main crack in uniaxially tensile-loaded polymer specimens,″ Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 112–119 (1979).

    Google Scholar 

  34. V. I. Aleshin, É. L. Aéro, M. F. Lebedeva, and E. V. Kuvshinskii, ″Dependence of the specific work of fracture on the crack growth rate in glassy polymers. Effect of the molecular structure,″ Mekh. Kompozitn. Mater., No. 1, 15–20 (1979).

    Google Scholar 

  35. A. G. Evans and Y. Fu, ″Some effects of microcracks on the mechanical properties of brittle solids. 2. Microcrack toughening,″ Acta Metall.,33, No. 8, 1525–1531 (1985).

    Google Scholar 

  36. V. I. Aleshin, M. F. Lebedeva, and E. V. Kuvshinskii, ″Growth of main cracks in sheets of polymethylmethacrylate,″ Mekh. Polim., No. 4, 609–615 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 2, pp. 209–217, March–April, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessonov, M.I., Dolotova, N.A. & Aleshin, V.I. Quantitative modeling of quasibrittle fracture. Application to the problem of interaction and coalescence of cracks in polymers. Mech Compos Mater 23, 140–147 (1987). https://doi.org/10.1007/BF00606312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606312

Keywords

Navigation