Skip to main content
Log in

The effect of light on glycogen turnover in the retina of the intact honeybee drone (Apis mellifera)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The drone retina is composed of two types of cells: the photoreceptors in which no glycogen has been detected by electron microscopy and the glial cells which have abundant glycogen stores. 15 min light stimulation of the retina of intact drones caused a 33% decrease of the glycogen content, which recovered with more prolonged stimulation. Photostimulation of the retina for more than 15 min led to an increase of incorporation of3H-glucose into glycogen. Since apparently both synthesis and degradation increase (when stimulation lasts for more than 15 min) the results demonstrate an increase of glycogen turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum H, Tscharntke H (1962) Der Sauerstoffverbrauch der Insektenretina im Licht und im Dunkeln. Z Vergl Physiol 45:695–710

    Google Scholar 

  • Baumann F (1974) Electrophysiological properties of the honeybee retina. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 53–74

    Google Scholar 

  • Baumann F, Mauro A (1973) Effect of hypoxia on the change in membrane conductance evoked by illumination in arthropod photoreceptors. Nature 244:146–148

    Google Scholar 

  • Bertrand D (1974) Etudes des propriétés électrophysiologiques des cellules pigmentaires de la rétine du faux bourdon. Thèse No 1650, Geneva University

  • Bertrand D, Fuortes G, Muri R (1979) Pigment transformation and electrical responses in retinula cells of droneApis mellifera. J Physiol (Lond) 296:431–441

    Google Scholar 

  • Brandt NR, Huber RE (1979) Carbohydrate utilization in the thoraces of honeybees (Apis mellifera) during early times of flight. J Insect Physiol 25:483–486

    Google Scholar 

  • Chan TM, Exton JH (1976) A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes. Anal Biochem 71:96–105

    Google Scholar 

  • Coles JA, Tsacopoulos M (1979) K+ activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol (Lond) 290:525–549

    Google Scholar 

  • Coles JA, Tsacopoulos M (1981) Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone. J Exp Biol 95:75–92

    Google Scholar 

  • Devos P, Hers HG (1979) A molecular order in the synthesis and degradation of glycogen in the liver. Eur J Biochem 99:161–167

    Google Scholar 

  • Evêquoz V, Deshusses J, Tsacopoulos M (1978) The effect of photostimulation on the glycogen turnover in the retina of the honey-bee drone. Experientia 34:897

    Google Scholar 

  • Hamdorf K, Kaschef AH (1964) Der Sauerstoffverbrauch der Facettenaugen vonCalliphora erythrocephala in Abhängigkeit von der Temperatur und dem Ionenmilieu. Z Vergl Physiol 48:251–265

    Google Scholar 

  • Jöngbloed J, Wiersma CAG (1935) Der Stoffwechsel der Honigbiene während des Fliegens. Z Vergl Physiol 21:519–533

    Google Scholar 

  • Langer H (1962) Die Wirkung von Licht auf den chemischen Grundaufbau des Auges vonCalliphora erythrocephala Meigen. J Insect Physiol 4:283–303

    Google Scholar 

  • Lowry O, Rosenbrough NJR, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Nahorski SR, Rogers KH (1972) An enzymatic fluorometric micromethod for determination of glycogen. Anal Biochem 49:492–497

    Google Scholar 

  • Pentreath VW, Kai-Kai MA (1982) Significance of the potassium signal from neurones to glial cells. Nature 295:59–61

    Google Scholar 

  • Perrelet A (1970) The fine structure of the retina of the honeybee drone. Z Zellforsch Mikrosk Anat 108:530–562

    Google Scholar 

  • Perrelet A (1972) Protein synthesis in the visual cells of the honeybee drone as studied with electron microscope radioautography. J Cell Biol 55:595–605

    Google Scholar 

  • Sacktor B, Wormser-Shavit E (1966) Regulation of metabolism in working muscle in vivo. J Biol Chem 241:624–631

    Google Scholar 

  • Sacktor B (1975) Biochemistry of insect flight. In: Candy DJ, Kilby BA (eds) Insect biochemistry and function. Chapman and Hall, London, pp 3–88

    Google Scholar 

  • Salem RD, Hammerschlag R, Bracho H, Orkand RK (1975) Influence of potassium ions on accumulation and metabolism of14C glucose by glial cells. Brain Res 86:499–503

    Google Scholar 

  • Spring JH, Matthews JR, Downer RGH (1977) Fate of glucose in haemolymph of the American cockroach,Periplaneta americana. J Insect Physiol 23:525–529

    Google Scholar 

  • Tsacopoulos M, Evêquoz V (1980) L'effet de la stimulation photique sur le métabolisme du glycogène intrarétinien. Klin Monatsbl Augenheilkd 176:519–521

    Google Scholar 

  • Tsacopoulos M, Poitry S (1982) Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera). J Gen Physiol 80:19–55

    Google Scholar 

  • Tsacopoulos M, Poitry S, Borsellino A (1981a) Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol 77:601–628

    Google Scholar 

  • Tsacopoulos M, Poitry S, Borsellino A (1981b) Oxygen consumption by drone photoreceptors in darkness and during repetitive stimulation with light flashes. In: Kovách AGB, Dóra E, Kessler M, Silver IA (eds) Advances Physiol Sci oxygen transport to tissue, vol 25. Pergamon Press, Akadémiai Kiadó, Budapest, pp 235–236

    Google Scholar 

  • Weber KW, Zinkler D (1973) Enzyme and phospholopid patterns in the compound eye of insects. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 327–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evêquoz, V., Stadelmann, A. & Tsacopoulos, M. The effect of light on glycogen turnover in the retina of the intact honeybee drone (Apis mellifera). J. Comp. Physiol. 150, 69–75 (1983). https://doi.org/10.1007/BF00605289

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605289

Keywords

Navigation