Skip to main content
Log in

Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Following lateral line stimulation with surface waves single unit activity was recorded from the periphery, torus semicircularis, and tecturn opticum ofXenopus laevis. The reaction of units to varying stimulus directions was examined.

The directional specificity (DS) was calculated on the basis of spike counts per stimulus using circular statistics. It was expressed as the length of the mean vector.

Discharges of primary afferents of the ramus supraorbitalis and ramus infraorbitalis were phase locked to the stimulus to a varying degree depending on the location of the corresponding groups of neuromasts. Their DS was not better than 0.26.

Lemniscal fibers, representing the ascending output of the medulla and units of the torus semicircularis reached a DS of 0.10–0.24 and 0.11–0.36 respectively. Neurons in the tectum opticum were the most sharply tuned with DS ranging between 0.81 and 0.96.

The surroundings were represented by the best directions of two arrays of tectal units forming a map which is in register with the representation of the corresponding visual field of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DS :

directional specificity

r.i.o. :

ramus infraorbitalis

r.s.o. :

ramus supraorbitalis

References

  • Altman JS, Dawes EA (1981) Mapping of lateral line and auditory input to the brain ofXenopus laevis. J Physiol 317:78–79

    Google Scholar 

  • Bleckmann H (1985) Perception of water surface waves: How surface waves are used for prey identification, prey localization and intraspecific communication. In: Ottoson D (ed) Progress in sensory physiology. Springer, Berlin Heidelberg New York Tokyo, pp 147–166

    Google Scholar 

  • Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fishAplocheilus lineatus (Cyprinodontidae). J Comp Physiol 145:331–339

    Google Scholar 

  • Callens ME, Vandenbussche E, Greenway PH (1967) Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurons. Arch Int Physiol Biochem 75:148–150

    Google Scholar 

  • Comer C, Grobstein P (1981) Organization of the sensory inputs to the midbrain of the frog,Rana pipiens. J Comp Physiol 142:161–168

    Google Scholar 

  • Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis (Daudin) with intact or with lesioned lateral line system. J Comp Physiol 148:535–545

    Google Scholar 

  • Elepfandt A (1984) Topological representation of water wave directions in the lateral line midbrain projection of the clawed toad,Xenopus laevis Daudin. Neurosci Lett [Suppl] 18:241

    Google Scholar 

  • Ewert JP (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology in the optic tectum. Plenum Publishing Corporation, New York, pp 247–416

    Google Scholar 

  • Flock A (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol (Stockh) [Suppl] 199:1–90

    Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans des Krallenfrosches (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338

    Google Scholar 

  • Görner P (1976) Source localization with labyrinth and lateral line in the clawed toad (Xenopus laevis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 171–184

    Google Scholar 

  • Görner P, Moller P, Weber W (1984) Lateral-line input and stimulus localization in the African clawed toadXenopus laevis sp. J Exp Biol 108:315–328

    Google Scholar 

  • Heiligenberg W, Bastian J (1984) The electric sense of weakly electric fish. Annu Rev Physiol 46:561–583

    Google Scholar 

  • Hermes DJ, Eggermont JJ, Aertsen AMHJ, Johannesma PIM (1982) Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with tonal stimuli. Hearing Res 6:103–126

    Google Scholar 

  • Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fishPantodon buchholzii Pantodontidae. Anim Behav 32:840–851

    Google Scholar 

  • Knudsen EI (1976) Midbrain responses to electroreceptive input in catfish: Evidence of orientation preferences and somatotopic organization. J Comp Physiol 106:51–67

    Google Scholar 

  • Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmerNotonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Eng NY 47:1940–1951

    Google Scholar 

  • Levine RL (1980) An autoradiographic study of the retinal projection inXenopus laevis with comparison toRana. J Comp Neurol 189:1–29

    Google Scholar 

  • Lowe DA, Russell IJ (1982) The central projections of lateral line and cutaneous sensory fibers (VII and X) inXenopus laevis. Proc R Soc Lond B 216:279–297

    Google Scholar 

  • Malmgren L, Olsson Y (1978) A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res 148:279–294

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and physiology. Springer, Berlin Heidelberg New York Tokyo, pp 332–353

    Google Scholar 

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res Rev 6:247–297

    Google Scholar 

  • Müller U, Schwartz E (1982) Influence of single neuromasts on prey localization of the surface feeding fish,Aplocheilus lineatus. J Comp Physiol 149:399–408

    Google Scholar 

  • Pettigrew AG, Carlile S (1984) Auditory responses in the torus semicircularis of the cane toad,Bufo marinus. I. Field potential studies. Proc R Soc London B 222:231–242

    Google Scholar 

  • Pettigrew AG, Anson M, Chung SH (1981) Hearing in the frog: a neurophysiological study of the auditory response in the midbrain. Proc R Soc Lond B 212:433–457

    Google Scholar 

  • Plassmann W (1980) Central neuronal pathways in the lateral line system ofXenopus laevis. J Comp Physiol 136:203–213

    Google Scholar 

  • Rudolph P (1967) Zum Ortungsverhalten vonGyrinus substraticus Steph. (Taumelkäfer). Z Vergl Physiol 50:341–361

    Google Scholar 

  • Scheich H, Maler L (1976) Laminar organization of the torus semicircularis related to the input from two types of electroreceptors. Exp Brain Res [Suppl] 1:565–567

    Google Scholar 

  • Schwartz E (1965) Bau und Funktion der Seitenlinie des StreifenhechtlingsAplocheilus lineatus. Z Vergl Physiol 50:55–87

    Google Scholar 

  • Schwartz E (1974) Lateral-line mechanoreceptors in fishes and amphibians. In: Fessard A (ed) Electroreceptors and other specialized receptors in lower vertebrates. (Handbook of sensory physiology, vol III/3). Springer, Berlin Heidelberg New York, pp 257–278

    Google Scholar 

  • Schwartz E, Hasler AD (1966) Perception of surface waves by the blackstripe topminnow,Fundulus notatus. J Fish Res Bd Can 23:1331–1351

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis inXenopus laevis. J Embryol Exp Morphol 24:511–525

    Google Scholar 

  • Udin SB, Keating MJ (1981) Plasticity in a central nervous pathway inXenopus: Anatomical changes in the isthmotectal projection after larval eye rotation. J Comp Neurol 203:575–594

    Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tecturn of the leopard frog: an HRP study. J Comp Neurol 173:219–230

    Google Scholar 

  • Will U, Luhede G, Görner P (1985a) The area octavo-lateralis inXenopus laevis. I. The primary afferent projections. Cell Tissue Res 239:147–161

    Google Scholar 

  • Will U, Luhede G, Görner P (1985b) The area octavo-lateralis inXenopus laevis. II. Second order projections and cytoarchitecture. Cell Tissue Res 239:163–175

    Google Scholar 

  • Zar JH (1974) Biostatistical analysis. Prentice-Hall, Englewood Cliff

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zittlau, K.E., Claas, B. & Münz, H. Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin. J. Comp. Physiol. 158, 469–477 (1986). https://doi.org/10.1007/BF00603793

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603793

Keywords

Navigation