Skip to main content
Log in

Surface oxidation of nickel metal as studied by X-Ray photoelectron spectroscopy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy has been used to study the oxidation of polycrystalline nickel metal. The results indicate that the oxidation process takes place in three stages; associative adsorption of molecular oxygen, followed by the combination of oxygen atoms with surface nickel atoms and, ultimately, the formation of bulk oxide. At room temperature only the first two stages can be detected. For exposures below 1 L the O 1s photoelectron spectrum is considered to be characteristic of an associatively adsorbed oxygen species, but for exposures above this value evidence for the formation of a monolayer of “NiO” is suggested by the development of an O 1s peak at 529.9 eV. Incorporation of oxygen into the nickel lattice is observed at temperatures >500°K. The activation energy for this place-exchange process was estimated at 1.80±0.06 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hauffe, L. Peth, R. Schmidt, and S. R. Morrison,J. Electrochem. Soc. 115, 456 (1968).

    Google Scholar 

  2. J. V. Cathcart, G. F. Petersen, and C. J. Sparks,J. Electrochem. Soc. 116, 664 (1969).

    Google Scholar 

  3. G. C. Wood, I. G. Wright, and J. M. Ferguson,Corros. Sci. 5, 645 (1965).

    Google Scholar 

  4. R. Hales and A. C. Hill,Corros. Sci. 12, 843 (1972).

    Google Scholar 

  5. Z. M. Janzebski and S. Mrowec,Oxid. Met. 1, 267 (1969).

    Google Scholar 

  6. J. M. Perrow, W. W. Smeltzer, and J. D. Emburg,Acta Metall. 16, 1209 (1968).

    Google Scholar 

  7. M. W. Vernon and F. J. Spooner,J. Mater. Sci. 4, 112 (1969).

    Google Scholar 

  8. C. Wagner,Corros. Sci. 10, 641 (1970).

    Google Scholar 

  9. A. U. Mac Rae,Surf. Sci. 1, 319 (1964).

    Google Scholar 

  10. H. E. Farnsworth and H. A. Madden,J. Appl. Phys. 32, 1933 (1961).

    Google Scholar 

  11. L. H. Germer,Adv. Catal. 13, 191 (1962).

    Google Scholar 

  12. L. H. Germer and C. D. Hartman,J. Appl. Phys. 31, 2085 (1960).

    Google Scholar 

  13. D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc. 119, 1205 (1972).

    Google Scholar 

  14. M. J. Graham, G. I. Sproule, D. Caplan, and M. Cohen,J. Electrochem. Soc. 119, 883 (1972).

    Google Scholar 

  15. P. R. Norton and R. L. Tapping,Discuss. Faraday Soc. 60, 71 (1975).

    Google Scholar 

  16. S. Evans, J. Pielaszek, and J. M. Thomas,Surf. Sci. 55, 644 (1976).

    Google Scholar 

  17. J. Haber, J. Stock, and L. Ungier,J. Electron Spectrosc. Relat. Phenom. 9, 459 (1976).

    Google Scholar 

  18. K. S. Kim and N. Winograd,Surf. Sci. 43 625 (1974).

    Google Scholar 

  19. N. G. Krishnan, W. M. Delgass, and W. D. Robertson,Surf. Sci. 57, 1 (1976).

    Google Scholar 

  20. K. S. Kim and R. E. Davis,J. Electron Spectrosc. Relat Phenom 1, 251 (1972).

    Google Scholar 

  21. G. C. Allen, P. M. Tucker, and R. K. Wild,Proc. 7th Intern Vac. Congr. and 3rd Intern Conf. Solid Surfaces, Vienna (1977) p. 959.

  22. M. P. Hooker and J. T. Grant,J. Vac. Sci. Technol. 13, 296 (1976).

    Google Scholar 

  23. R. Hales, A. C. Hill, and R. K. Wild,Corros. Sci. 13, 325 (1973).

    Google Scholar 

  24. J. P. Coad and Rivière,Surf. Sci. 25, 609 (1971).

    Google Scholar 

  25. J. P. Coad,Surf. Sci. 30, 687 (1972).

    Google Scholar 

  26. G. C. Allen, P. M. Tucker, and R. K. Wild,Surf. Sci. 68, 469 (1977).

    Google Scholar 

  27. P. R. Norton, R. L. Tapping, and J. W. Goodale,Surf. Sci. 65, 13 (1977).

    Google Scholar 

  28. C. R. Brundle and A. F. Carley,Chem. Phys. Lett. 31, 423 (1975).

    Google Scholar 

  29. W. Heiland and E. Taglauer,Surf. Sci. 68, 96 (1977).

    Google Scholar 

  30. P. M. Marcus, J. E. Demuth, and D. W. Jepsen,Surf. Sci. 53, 501 (1975).

    Google Scholar 

  31. P. H. Holloway and J. B. Hudson,Surf. Sci. 43, 123 (1974);143, 141 (1974).

    Google Scholar 

  32. A. M. Horgan and D. A. King,Surf. Sci. 23, 259 (1970).

    Google Scholar 

  33. G. A. Swallow, Private communication.

  34. B. Szigeti,Trans. Faraday Soc. 45, 155 (1949).

    Google Scholar 

  35. C. R. Brundle,Surf. Sci. 48, 99 (1975).

    Google Scholar 

  36. G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker,J. Chem. Soc. Dalton Trans. 1675 (1973).

  37. G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker,J. Chem. Soc., Dalton Trans. 1525 (1974).

  38. O. Johnson,Chem. Scr. 8, 162 (1975).

    Google Scholar 

  39. G. A. Somorjai,Principles of Surface Chemistry (Prentice-Hall, N. J., 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, G.C., Tucker, P.M. & Wild, R.K. Surface oxidation of nickel metal as studied by X-Ray photoelectron spectroscopy. Oxid Met 13, 223–236 (1979). https://doi.org/10.1007/BF00603667

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603667

Key words

Navigation