Skip to main content
Log in

On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L.

I. Anatomy and physiology of descending cephalothoracic interneurons

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    An experimental set-up (Fig. 1) was designed to permit monitoring of multiple parameters of the activity of the acridid grasshopperOmocestus viridulus during stridulation induced by electrical stimulation of the brain (Fig. 2). These parameters were (i) intracellularly recorded action potentials of descending neurons subsequently stained by dye injection, (ii) electrical activity of the stridulatory muscles, (iii) the stridulatory movements and (iv) the sound pattern produced.

  2. 2.

    D.C. stimulation of the meso- and metathoracic ganglia isolated by transection of anterior and posterior connectives shows that these ganglia are independent of phasic input when generating the pattern of excitation for species-specific stridulation (Fig. 3).

  3. 3.

    Stridulation-related activity was observed (Figs. 4, 5) in neurons descending from the dorsal protocerebrum to at least the third abdominal ganglion. They send out collaterals in the subesophageal and all the thoracic ganglia. During stridulation, all but one of these brain neurons show a tonic increase in discharge rate; the remaining cell discharges in phase with the stridulation.

  4. 4.

    Neurons descending from the subesophageal ganglion (Figs. 6–9) project into the metathoracic ganglion and in some cases, into the abdominal ganglia. They send out collaterals in all the ganglia in which they have been visualized. The activity of the fibers is phasically coupled to the stridulation rhythm, the individual neurons being active at different phases of the stridulation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RD (1960) Sound communication in Orthoptera and Cicadidae. In: Lanyon WE, Tavagola WN (eds) Animal sounds and communication. Am Inst Biol Sci, Washington, pp 38–92

    Google Scholar 

  • Bentley DR (1969) Intracellular activity in cricket neurons during generation of song patterns. Z Vergl Physiol 62:267–283

    Google Scholar 

  • Bentley DR (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol 116:19–38

    Google Scholar 

  • Bowerman RF, Larimer JL (1976) Command interneurons in crustaceans. Comp Biochem Physiol 54A:1–5

    Google Scholar 

  • Burrows M (1979) Graded synaptic interaction between premotor interneurons of the locust. J Neurobiol 42:1108–1123

    Google Scholar 

  • Elsner N (1974) Neuroethology of sound production in gomphocerine grasshoppers. I. Song pattern and stridulatory movements. J Comp Physiol 88:67–102

    Google Scholar 

  • Elsner N, Huber F (1969) Die Organisation des Werbegesangs der HeuschreckeGomphocerippus rufus L in Abhängigkeit von zentralen und peripheren Bedingungen. Z Vergl Physiol 65:389–423

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355

    Google Scholar 

  • Faber A (1953) Laut- und Gebärdensprache bei Insekten: Orthoptera (Geradflügler). Teil I. Mitt Mus Naturk Nr 287, Stuttgart

  • Hedwig B (1985) Untersuchungen zur Kontrolle des Feldheuschreckengesangs durch intersegmentale Neurone. Dissertation Universität Göttingen

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol A 158:429–444

    Google Scholar 

  • Hedwig B, Elsner N (1985) Gemeinsame Struktur- und Funktionsanalyse von Nervenzellen. Leitz Mitteilungen, Bd VIII, Nr 8, S 221–227

    Google Scholar 

  • Helversen O von, Elsner N (1977) The stridulatory movements of acridid grasshoppers recorded with an opto-electronic device. J Comp Physiol 122:53–64

    Google Scholar 

  • Hirth C (1978) Die Koordination der Stridulationsbewegungen bei der HeuschreckeOmocestus viridulus. Diplomarbeit Universität Köln

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen der GrilleGryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1957) Elektrische Reizung des Insektengehirns mit einem Impuls- und Rechteckgenerator. Industrie-Elektronik 2:17

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Huber F (1963) The role of the central nervous system in Orthoptera during the co-ordination and control of stridulation. In: Busnel R-G (ed) The acoustic behaviour of animals. Elsevier, Amsterdam London New York, pp 440–488

    Google Scholar 

  • Huber F (1983) Der Weg vom Verhalten zur einzelnen Nervenzelle. Akad Wiss Lit, Steiner, Mainz

    Google Scholar 

  • Jacobs W (1953) Verhaltensbiologische Studien an Feldheuschrecken. Beiheft 1 zu Z Tierpsychol 10

  • Kien J, Altman JS (1984) Descending interneurons from the brain and suboesophageal ganglia and their role in the control of locust behavior. J Insect Physiol 30:54–72

    Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39

    Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia inGryllus campestris L. J Comp Physiol 81:115–119

    Google Scholar 

  • Oberholzer RJH, Huber F (1957) Methodik der elektrischen Reizung und Ausschaltung im Oberschlundganglion (Gehirn) nicht narkotisierter Grillen (Acheta domesticus L. undGryllus campestris L.). Helv Physiol Acta 15:185

    Google Scholar 

  • Otto D (1967) Untersuchungen zur nervösen Kontrolle des Grillengesangs. Zool Anz 31 Suppl: 585–592

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z Vergl Physiol 74:227–271

    Google Scholar 

  • Otto D, Campan R (1978) Descending interneurons from the cricket subesophageal ganglion. Naturwissenschaften 65:491–493

    Google Scholar 

  • Otto D, Weber T (1982) Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J Comp Physiol 148:209–219

    Google Scholar 

  • Otto D, Weber T (1985) Plurisegmental neurons of the cricketGryllus campestris L. that discharge in the rhythm of its own song. J Insect Physiol 31:537–548

    Google Scholar 

  • Ramirez J-M (1984) Charakterisierung der Ein- und Ausgänge multimodaler Interneurone im Unterschlundganglion vonSchistocerca gregaria. Abstract Neurobiologentagung, Göttingen 1984

  • Roeder KD (1953) Reflex activity and ganglion function. In: Roeder KD (ed) Insect physiology. John Wiley, New York, pp 463–487

    Google Scholar 

  • Römer H, Marquardt V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Google Scholar 

  • Snodgrass RE (1929) The thoracic mechanisms of a grasshopper and its antecedents. Smithson Misc Collect 82:1–111

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759

    Google Scholar 

  • Usherwood P, Grundfest H (1965) Peripheral inhibition in skeletal muscle of insects. J Neurophysiol 28:497–518

    Google Scholar 

  • Wadepuhl M (1983) Control of grasshopper singing behavior by the brain: responses to electrical stimulation. Z Tierpsychol 63:173–200

    Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: A ground-plan of the midbrain and an introduction to the central complex in the locust,Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Google Scholar 

  • Wilson JA, Phillips C (1983) Pre-motor non-spiking interneurons. Progr Neurobiol 20:89–107

    Google Scholar 

  • Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L.,Gryllus bimaculatus DeGeer). J Comp Physiol 127:11–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwig, B. On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L.. J. Comp. Physiol. 158, 413–427 (1986). https://doi.org/10.1007/BF00603625

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603625

Keywords

Navigation